Person:
Nucci, Marisa

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Nucci

First Name

Marisa

Name

Nucci, Marisa

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Publication
    Intravenous Leiomyomatosis: An Unusual Intermediate between Benign and Malignant Uterine Smooth Muscle Tumors
    (2016) Ordulu, Zehra; Nucci, Marisa; Dal Cin, Paola; Hollowell, Monica; Otis, Christopher N.; Hornick, Jason; Park, Peter; Kim, Tae-Min; Quade, Bradley; Morton, Cynthia
    Intravenous leiomyomatosis is an unusual smooth muscle neoplasm with quasi-malignant intravascular growth but a histologically banal appearance. Herein, we report expression and molecular cytogenetic analyses of a series of 12 intravenous leiomyomatosis cases to understand better the pathogenesis of intravenous leiomyomatosis. All cases were analyzed for expression of HMGA2, MDM2 and CDK4 proteins by immunohistochemistry based on our previous finding of der(14)t(12;14)(q14.3;q24) in intravenous leiomyomatosis. Seven of 12 (58%) intravenous leiomyomatosis cases expressed HMGA2, and none expressed MDM2 or CDK4. Co-localization of hybridization signals for probes from the HMGA2 locus (12q14.3) and from 14q24 by interphase fluorescence in situ hybridization (FISH) was detected in a mean of 89.2% of nuclei in HMGA2-positive cases by immunohistochemistry, but in only 12.4% of nuclei in negative cases, indicating an association of HMGA2 expression and this chromosomal rearrangement (p=8.24×10−10). Four HMGA2-positive cases had greater than two HMGA2 hybridization signals per cell. No cases showed loss of a hybridization signal by interphase FISH for the frequently deleted region of 7q22 in uterine leiomyomata. One intravenous leiomyomatosis case analyzed by array comparative genomic hybridization revealed complex copy number variations. Finally, expression profiling was performed on three intravenous leiomyomatosis cases. Interestingly, hierarchical cluster analysis of the expression profiles revealed segregation of the intravenous leiomyomatosis cases with leiomyosarcoma rather than with myometrium, uterine leiomyoma of the usual histological type, or plexiform leiomyoma. These findings suggest that intravenous leiomyomatosis cases share some molecular cytogenetic characteristics with uterine leiomyoma, and expression profiles similar to that of leiomyosarcoma cases, further supporting their intermediate, quasi-malignant behavior.
  • Thumbnail Image
    Publication
    Peritoneal Dissemination Complicating Morcellation of Uterine Mesenchymal Neoplasms
    (Public Library of Science, 2012) Seidman, Michael A.; Oduyebo, Titilope; Muto, Michael; Crum, Christopher; Nucci, Marisa; Quade, Bradley
    Background: Power morcellation has become a common technique for the minimally invasive resection of uterine leiomyomas. This technique is associated with dissemination of cellular material throughout the peritoneum. When morcellated uterine tumors are unexpectedly found to be leiomyosarcomas or tumors with atypical features (atypical leiomyoma, smooth muscle tumor of uncertain malignant potential), there may be significant clinical consequences. This study was undertaken to determine the frequency and clinical consequence of intraperitoneal dissemination of these neoplasms. Methodology/principal findings: From 2005–2010, 1091 instances of uterine morcellation were identified at BWH. Unexpected diagnoses of leiomyoma variants or atypical and malignant smooth muscle tumors occurred in 1.2% of cases using power morcellation for uterine masses clinically presumed to be “fibroids” over this period, including one endometrial stromal sarcoma (ESS), one cellular leiomyoma (CL), six atypical leiomyomas (AL), three smooth muscle tumor of uncertain malignant potential (STUMPs), and one leiomyosarcoma (LMS). The rate of unexpected sarcoma after the laparoscopic morcellation procedure was 0.09%, 9-fold higher than the rate currently quoted to patients during pre-procedure briefing, and this rate may increase over time as diagnostically challenging or under-sampled tumors manifest their biological potential. Furthermore, when examining follow-up laparoscopies, both from in-house and consultation cases, disseminated disease occurred in 64.3% of all tumors (zero of one ESS, one of one CL, zero of one AL, four of four STUMPs, and four of seven LMS). Only disseminated leiomyosarcoma, however, was associated with mortality. Procedures are proposed for pathologic evaluation of morcellation specimens and associated follow-up specimens. Conclusions/significance: While additional study is warranted, these data suggest uterine morcellation carries a risk of disseminating unexpected malignancy with apparent associated increase in mortality much higher than appreciated currently.
  • Publication
    Detection of ERBB2 Amplification in Uterine Serous Carcinoma by Next-Generation Sequencing: An Approach Highly Concordant With Standard Assays
    (Springer Science and Business Media LLC, 2020-10-19) Robinson, Carrie; Harrison, Beth; Ligon, Azra; Dong, Fei; Maffeis, Valeria; Matulonis, Ursula; Nucci, Marisa; Kolin, David L.
    Uterine serous carcinoma is an aggressive subtype of endometrial cancer that accounts for fewer than 10% of endometrial carcinomas but is responsible for about half of deaths. A subset of cases has HER2 overexpression secondary to ERBB2 gene amplification, and these patients may benefit from anti-HER2 therapies, such as trastuzumab. HER2 protein overexpression is currently assessed by immunohistochemistry (IHC) and ERBB2 gene amplification by fluorescence in situ hybridization (FISH). Targeted next-generation sequencing (NGS) is increasingly used to routinely identify predictive and prognostic molecular abnormalities in endometrial carcinoma. To investigate the ability of a targeted NGS panel to detect ERBB2 amplification, we identified cases of uterine serous carcinoma (n=93) and compared HER2 expression by IHC and copy number assessed by FISH with copy number status assessed by NGS. ERBB2 copy number status using a combination of IHC and FISH was interpreted using the 2018 ASCO/CAP guidelines for breast carcinoma. ERBB2 amplification by NGS was determined by the relative number of reads mapping to ERBB2 in tumor DNA compared to control non-neoplastic DNA. Cases with copy number ≥6 were considered amplified and copy number <6 were non-amplified. By IHC, 70 specimens were classified as negative (0 or 1+), 19 were classified as equivocal (2+), and 4 were classified as positive (3+). Using combined IHC/FISH, ERBB2 amplification was observed in 8 of 93 cases (9%). NGS identified the same 8 cases with copy number ≥6; all 85 others had copy number <6. In this series, NGS had 100% concordance with combined IHC/FISH in identifying ERBB2 amplification. NGS is highly accurate in detecting ERBB2 amplification in uterine serous carcinoma and provides an alternative to measurement by IHC and FISH.