Person:
Das, Saumya

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Das

First Name

Saumya

Name

Das, Saumya

Search Results

Now showing 1 - 10 of 18
  • Thumbnail Image
    Publication
    A snapshot of genetic and epigenetic basis of arrhythmia and heart failure
    (Frontiers Media S.A., 2015) Xiao, Junjie; Sluijter, Joost P. G.; Das, Saumya; Yang, Yiqing; Shen, Zhongming
  • Thumbnail Image
    Publication
    Plasma Circulating Extracellular RNAs in Left Ventricular Remodeling Post-Myocardial Infarction
    (Elsevier, 2018) Danielson, Kirsty M.; Shah, Ravi; Yeri, Ashish; Liu, Xiaojun; Camacho Garcia, Fernando; Silverman, Michael; Tanriverdi, Kahraman; Das, Avash; Xiao, Chunyang; Jerosch-Herold, Michael; Heydari, Bobak; Abbasi, Siddique; Van Keuren-Jensen, Kendall; Freedman, Jane E.; Wang, Yaoyu E.; Rosenzweig, Anthony; Kwong, Raymond; Das, Saumya
    Despite substantial declines in mortality following myocardial infarction (MI), subsequent left ventricular remodeling (LVRm) remains a significant long-term complication. Extracellular small non-coding RNAs (exRNAs) have been associated with cardiac inflammation and fibrosis and we hypothesized that they are associated with post-MI LVRm phenotypes. RNA sequencing of exRNAs was performed on plasma samples from patients with “beneficial” (decrease LVESVI ≥ 20%, n = 11) and “adverse” (increase LVESVI ≥ 15%, n = 11) LVRm. Selected differentially expressed exRNAs were validated by RT-qPCR (n = 331) and analyzed for their association with LVRm determined by cardiac MRI. Principal components of exRNAs were associated with LVRm phenotypes post-MI; specifically, LV mass, LV ejection fraction, LV end systolic volume index, and fibrosis. We then investigated the temporal regulation and cellular origin of exRNAs in murine and cell models and found that: 1) plasma and tissue miRNA expression was temporally regulated; 2) the majority of the miRNAs were increased acutely in tissue and at sub-acute or chronic time-points in plasma; 3) miRNA expression was cell-specific; and 4) cardiomyocytes release a subset of the identified miRNAs packaged in exosomes into culture media in response to hypoxia/reoxygenation. In conclusion, we find that plasma exRNAs are temporally regulated and are associated with measures of post-MI LVRm.
  • Thumbnail Image
    Publication
    Extracellular RNAs Are Associated With Insulin Resistance and Metabolic Phenotypes
    (American Diabetes Association, 2017) Shah, Ravi; Murthy, Venkatesh; Pacold, Michael; Danielson, Kirsty; Tanriverdi, Kahraman; Larson, Martin G.; Hanspers, Kristina; Pico, Alexander; Mick, Eric; Reis, Jared; de Ferranti, Sarah; Freinkman, Elizaveta; Levy, Daniel; Hoffmann, Udo; Osganian, Stavroula; Das, Saumya; Freedman, Jane E.
    OBJECTIVE Insulin resistance (IR) is a hallmark of obesity and metabolic disease. Circulating extracellular RNAs (ex-RNAs), stable RNA molecules in plasma, may play a role in IR, though most studies on ex-RNAs in IR are small. We sought to characterize the relationship between ex-RNAs and metabolic phenotypes in a large community-based human cohort. RESEARCH DESIGN AND METHODS We measured circulating plasma ex-RNAs in 2,317 participants without diabetes in the Framingham Heart Study (FHS) Offspring Cohort at cycle 8 and defined associations between ex-RNAs and IR (measured by circulating insulin level). We measured association between candidate ex-RNAs and markers of adiposity. Sensitivity analyses included individuals with diabetes. In a separate cohort of 90 overweight/obese youth, we measured selected ex-RNAs and metabolites. Biology of candidate microRNAs was investigated in silico. RESULTS The mean age of FHS participants was 65.8 years (56% female), with average BMI 27.7 kg/m2; participants in the youth cohort had a mean age of 15.5 years (60% female), with mean BMI 33.8 kg/m2. In age-, sex-, and BMI-adjusted models across 391 ex-RNAs in FHS, 18 ex-RNAs were associated with IR (of which 16 were microRNAs). miR-122 was associated with IR and regional adiposity in adults and IR in children (independent of metabolites). Pathway analysis revealed metabolic regulatory roles for miR-122, including regulation of IR pathways (AMPK, target of rapamycin signaling, and mitogen-activated protein kinase). CONCLUSIONS These results provide translational evidence in support of an important role of ex-RNAs as novel circulating factors implicated in IR.
  • Thumbnail Image
    Publication
    Circulating miR-21, miR-378, and miR-940 increase in response to an acute exhaustive exercise in chronic heart failure patients
    (Impact Journals LLC, 2016) Xu, Tianzhao; Zhou, Qiulian; Che, Lin; Das, Saumya; Wang, Lemin; Jiang, Jinfa; Li, Guanghe; Xu, Jiahong; Yao, Jianhua; Wang, Hongbao; Dai, Yue; Xiao, Junjie
    Congestive heart failure (CHF) is a major cause of hospitalizations, morbidity, and mortality in Western societies. In addition to optimal medical and device therapy, exercise training is an important adjunct treatment option for CHF patients. MicroRNAs (miRNAs, miRs) participate in a variety of physiological and pathological processes. Dynamic regulation of circulating miRNAs during exercise in healthy persons and athletes has recently been documented, however, the response of circulating miRNAs to exercise in CHF patients is undetermined. Twenty-eight CHF patients underwent a symptom-limited incremental cardiopulmonary exercise test on a bicycle ergometer using a standardized exercise protocol of revised Ramp10 programs at Shanghai Tongji Hospital. Blood samples were collected before and immediately after an acute exercise session. RNA was extracted from the serum and selected miRNAs were determined using quantitative polymerase chain reactions. Moreover, inflammatory and muscle damage markers were determined by enzyme linked immunosorbent assays. We found that serum miR-21, miR-378 and miR-940 levels were significantly up-regulated immediately following an acute exercise while the rest were not changed. In addition, no robust correlation was identified between changes of these miRNAs and exercise capacity, muscle damage or inflammation. In conclusion, serum miR-21, miR-378, and miR-940 increase in response to an acute exhaustive exercise in CHF patients. Further studies are needed to clarify the potential use of circulating miRNAs as biomarkers of exercise adaptation in CHF patients, and if they have any use as prognostic markers of cardiovascular outcomes.
  • Thumbnail Image
    Publication
    Diurnal Variations of Circulating Extracellular Vesicles Measured by Nano Flow Cytometry
    (Public Library of Science, 2016) Danielson, Kirsty; Estanislau, Jessica; Tigges, John; Toxavidis, Vasilis; Camacho, Virginia; Felton, Edward J.; Khoory, Joseph; Kreimer, Simion; Ivanov, Alexander R.; Mantel, Pierre-Yves; Jones, Jennifer; Akuthota, Praveen; Das, Saumya; Ghiran, Ionita
    The identification of extracellular vesicles (EVs) as intercellular conveyors of biological information has recently emerged as a novel paradigm in signaling, leading to the exploitation of EVs and their contents as biomarkers of various diseases. However, whether there are diurnal variations in the size, number, and tissue of origin of blood EVs is currently not known, and could have significant implications when using EVs as biomarkers for disease progression. Currently available technologies for the measurement of EV size and number are either time consuming, require specialized equipment, or lack sufficient accuracy across a range of EV sizes. Flow cytometry represents an attractive alternative to these methods; however, traditional flow cytometers are only capable of measuring particles down to 500 nm, which is significantly larger than the average and median sizes of plasma EVs. Utilizing a Beckman Coulter MoFlo XDP flow cytometer with NanoView module, we employed nanoscale flow cytometry (termed nanoFCM) to examine the relative number and scatter distribution of plasma EVs at three different time points during the day in 6 healthy adults. Analysis of liposomes and plasma EVs proved that nanoFCM is capable of detecting biologically-relevant vesicles down to 100 nm in size. With this high resolution configuration, we observed variations in the relative size (FSC/SSC distributions) and concentration (proportions) of EVs in healthy adult plasma across the course of a day, suggesting that there are diurnal variations in the number and size distribution of circulating EV populations. The use of nanoFCM provides a valuable tool for the study of EVs in both health and disease; however, additional refinement of nanoscale flow cytometric methods is needed for use of these instruments for quantitative particle counting and sizing. Furthermore, larger scale studies are necessary to more clearly define the diurnal variations in circulating EVs, and thus further inform their use as biomarkers for disease.
  • Thumbnail Image
    Publication
    Genetic and Epigenetic Regulation Networks: Governing from Cardiovascular Development to Remodeling
    (Hindawi, 2017) Xiao, Junjie; Cretoiu, Dragos; Lei, Zhiyong; Das, Saumya; Li, Xinli
  • Thumbnail Image
    Publication
    Usefulness of Hemoglobin A1c to Predict Outcome After Cardiac Resynchronization Therapy in Patients With Diabetes Mellitus and Heart Failure
    (Elsevier BV, 2012) Shah, Ravi; Altman, Robert K.; Park, Mi Young; Zilinski, Jodi; Leyton-Mange, Jordan Stewart; Orencole, Mary; Picard, Michael; Barrett, Conor D.; Heist, Edwin; Upadhyay, Gaurav; Das, Ranendra; Singh, Jagmeet; Das, Saumya
    Patients with diabetes and heart failure (HF) have worse clinical outcomes compared to patients with HF without diabetes after cardiac resynchronization therapy (CRT). Patients with HF and diabetes represent a growing population at high risk for cardiovascular events and are increasingly treated with CRT. Although patients with diabetes and HF appear to benefit from CRT, their clinical outcomes are worse than those of patients without diabetes after CRT. The aim of this study was to identify clinical predictors that explain the differential hazard in patients with diabetes. We studied 442 patients (169 with diabetes) with systolic HF referred to the Massachusetts General Hospital CRT clinic from 2003 to 2010 to identify predictors of outcomes after CRT in patients with HF and diabetes. Patients with diabetes were more likely to have ischemic causes of HF than those without diabetes, but there was no difference in the left ventricular ejection fraction or HF classification at implantation. Patients with diabetes had poorer event-free survival (death or HF hospitalization) compared to those without diabetes (log-rank p = 0.04). The presence of diabetes was the most important independent predictor of differential outcomes in the entire population (hazard ratio 1.65, 95% confidence interval 1.10 to 2.51). Patients with diabetes receiving insulin therapy had poorer survival, whereas those not receiving insulin therapy had similar survival to patients without diabetes. Patients with peri-implantation glycosylated hemoglobin >7% had worse outcomes, whereas patients with glycosylated hemoglobin ≤7% had improved survival (hazard ratio 0.36, 95% confidence interval 0.15 to 0.86) equivalent to that of patients without diabetes. In conclusion, although the presence of diabetes, independent of other variables, increases the hazard of worse outcomes after CRT, there is additional risk conferred by insulin use and suboptimal peri-implantation glycemic control.
  • Thumbnail Image
    Publication
    Your Father and Grandfather's Atrial Fibrillation: A Review of the Genetics of the Most Common Pathologic Cardiac Dysrhythmia
    (Bentham Science Publishers, 2015) Palatinus, Joseph A; Das, Saumya
    Atrial fibrillation (AF) remains the most common pathologic dysrhythmia in humans with a prevalence of 1-2% of the total population and as high as 10% of the elderly. AF is an independent risk marker for cardiovascular mortality and morbidity, and given the increasing age of the population, represents an increasing burden of disease. Although age and hypertension are known risk factors for development of AF, the study of families with early onset AF revealed mutations in genes coding for ion channels and other proteins involved in electrotonic coupling as likely culprits for the pathology in select cases. Recent investigations using Genome-Wide Association Studies have revealed several single nucleotide polymorphisms (SNPs) that appear to be associated with AF and have highlighted new genes in the proximity of the SNPs that may potentially contribute to the development of the dysrhythmia. Here we review the genetics of AF and discuss how application of GWAS and next generation sequencing have advanced our knowledge of AF and further investigations may yield novel therapeutic targets for the disease.
  • Thumbnail Image
    Publication
    Traditional Chinese Medication Qiliqiangxin attenuates cardiac remodeling after acute myocardial infarction in mice
    (Nature Publishing Group, 2015) Tao, Lichan; Shen, Sutong; Fu, Siyi; Fang, Hongyi; Wang, Xiuzhi; Das, Saumya; Sluijter, Joost P. G.; Rosenzweig, Anthony; Zhou, Yonglan; Kong, Xiangqing; Xiao, Junjie; Li, Xinli
    In a multicenter randomized double-blind study we demonstrated that Qiliqiangxin (QLQX), a traditional Chinese medicine, had a protective effect in heart failure patients. However, whether and via which mechanism QLQX attenuates cardiac remodeling after acute myocardial infarction (AMI) is still unclear. AMI was created by ligating the left anterior descending coronary artery in mice. Treating the mice in the initial 3 days after AMI with QLQX did not change infarct size. However, QLQX treatment ameliorated adverse cardiac remodeling 3 weeks after AMI including better preservation of cardiac function, decreased apoptosis and reduced fibrosis. Peroxisome proliferator-activated receptor-γ (PPARγ) was down-regulated in control animals after AMI and up-regulated by QLQX administration. Interestingly, expression of AKT, SAPK/JNK, and ERK was not altered by QLQX treatment. Inhibition of PPARγ reduced the beneficial effects of QLQX in AMI remodeling, whereas activation of PPARγ failed to provide additional improvement in the presence of QLQX, suggesting a key role for PPARγ in the effects of QLQX during cardiac remodeling after AMI. This study indicates that QLQX attenuates cardiac remodeling after AMI by increasing PPARγ levels. Taken together, QLQX warrants further investigation as as a therapeutic intervention to mitigate remodeling and heart failure after AMI.
  • Thumbnail Image
    Publication
    miR-31a-5p promotes postnatal cardiomyocyte proliferation by targeting RhoBTB1
    (Nature Publishing Group, 2017) Xiao, Junjie; Liu, Hui; Cretoiu, Dragos; Toader, Daniela Oana; Suciu, Nicolae; Shi, Jing; Shen, Shutong; Bei, Yihua; Sluijter, Joost PG; Das, Saumya; Kong, Xiangqing; Li, Xinli
    A limited number of microRNAs (miRNAs, miRs) have been reported to control postnatal cardiomyocyte proliferation, but their strong regulatory effects suggest a possible therapeutic approach to stimulate regenerative capacity in the diseased myocardium. This study aimed to investigate the miRNAs responsible for postnatal cardiomyocyte proliferation and their downstream targets. Here, we compared miRNA profiles in cardiomyocytes between postnatal day 0 (P0) and day 10 (P10) using miRNA arrays, and found that 21 miRNAs were upregulated at P10, whereas 11 were downregulated. Among them, miR-31a-5p was identified as being able to promote cardiomyocyte proliferation as determined by proliferating cell nuclear antigen (PCNA) expression, double immunofluorescent labeling for α-actinin and 5-ethynyl-2-deoxyuridine (EdU) or Ki-67, and cell number counting, whereas miR-31a-5p inhibition could reduce their levels. RhoBTB1 was identified as a target gene of miR-31a-5p, mediating the regulatory effect of miR-31a-5p in cardiomyocyte proliferation. Importantly, neonatal rats injected with a miR-31a-5p antagomir at day 0 for three consecutive days exhibited reduced expression of markers of cardiomyocyte proliferation including PCNA expression and double immunofluorescent labeling for α-actinin and EdU, Ki-67 or phospho-histone-H3. In conclusion, miR-31a-5p controls postnatal cardiomyocyte proliferation by targeting RhoBTB1, and increasing miR-31a-5p level might be a novel therapeutic strategy for enhancing cardiac reparative processes.