Person: DiFiglia, Marian
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
DiFiglia
First Name
Marian
Name
DiFiglia, Marian
10 results
Search Results
Now showing 1 - 10 of 10
Publication The COOH-terminal domain of huntingtin interacts with RhoGEF kalirin and modulates cell survival(Nature Publishing Group UK, 2018) McClory, Hollis; Wang, Xiaolong; Sapp, Ellen; Gatune, Leah W.; Iuliano, Maria; Wu, Chiu-Yi; Nathwani, Gina; Kegel-Gleason, Kimberly B.; DiFiglia, Marian; Li, XueyiHuman huntingtin (Htt) contains 3144 amino acids and has an expanded polyglutamine region near the NH2-terminus in patients with Huntington’s disease. While numerous binding partners have been identified to NH2-terminal Htt, fewer proteins are known to interact with C-terminal domains of Htt. Here we report that kalirin, a Rac1 activator, is a binding partner to C-terminal Htt. Kalirin and Htt co-precipitated from mouse brain endosomes and co-localized at puncta in NRK and immortalized striatal cells and primary cortical neurons. We mapped the interaction domains to kalirin674-1272 and Htt2568-3144 and determined that the interaction between kalirin and Htt was independent of HAP1, a known interactor for Htt and kalirin. Kalirin precipitated with mutant Htt was more abundant than with wild-type Htt and had a reduced capacity to activate Rac1 when mutant Htt was present. Expression of Htt2568-3144 caused cytotoxicity, partially rescued by co-expressing kalirin674-1272 but not other regions of kalirin. Our study suggests that the interaction of kalirin with the C-terminal region of Htt influences the function of kalirin and modulates the cytotoxicity induced by C-terminal Htt.Publication SUMO-2 and PIAS1 Modulate Insoluble Mutant Huntingtin Protein Accumulation(2013) O’Rourke, Jacqueline Gire; Gareau, Jaclyn R.; Ochaba, Joseph; Song, Wan; Raskó, Tamás; Reverter, David; Lee, John; Monteys, Alex Mas; Pallos, Judit; Mee, Lisa; Vashishtha, Malini; Apostol, Barbara L.; Nicholson, Thomas Peter; Illes, Katalin; Zhu, Ya-Zhen; Dasso, Mary; Bates, Gillian P.; DiFiglia, Marian; Davidson, Beverly; Wanker, Erich E.; Marsh, J. Lawrence; Lima, Christopher D.; Steffan, Joan S.; Thompson, Leslie M.SUMMARY A key feature in Huntington disease (HD) is the accumulation of mutant Huntingtin (HTT) protein, which may be regulated by posttranslational modifications. Here, we define the primary sites of SUMO modification in the amino-terminal domain of HTT, show modification downstream of this domain, and demonstrate that HTT is modified by the stress-inducible SUMO-2. A systematic study of E3 SUMO ligases demonstrates that PIAS1 is an E3 SUMO ligase for both HTT SUMO-1 and SUMO-2 modification and that reduction of dPIAS in a mutant HTT Drosophila model is protective. SUMO-2 modification regulates accumulation of insoluble HTT in HeLa cells in a manner that mimics proteasome inhibition and can be modulated by overexpression and acute knockdown of PIAS1. Finally, the accumulation of SUMO-2-modified proteins in the insoluble fraction of HD postmortem striata implicates SUMO-2 modification in the age-related pathogenic accumulation of mutant HTT and other cellular proteins that occurs during HD progression.Publication Autophagy Activation by Transcription Factor EB (TFEB) in Striatum of HDQ175/Q7 Mice(IOS Press, 2016) Vodicka, Petr; Chase, Kathryn; Iuliano, Maria; Tousley, Adelaide; Valentine, Dana T.; Sapp, Ellen; Kegel-Gleason, Kimberly B.; Sena-Esteves, Miguel; Aronin, Neil; DiFiglia, MarianBackground: Mutant huntingtin (mHTT) is encoded by the Huntington’s disease (HD) gene and its accumulation in the brain contributes to HD pathogenesis. Reducing mHTT levels through activation of the autophagosome-lysosomal pathway may have therapeutic benefit. Transcription factor EB (TFEB) regulates lysosome biogenesis and autophagy. Objective: To examine if increasing TFEB protein levels in HD mouse striatum induces autophagy and influences mHTT levels. Methods: We introduced cDNA encoding TFEB with an HA tag (TFEB-HA) under the control of neuron specific synapsin 1 promoter into the striatum of 3 month old HDQ175/Q7 mice using adeno-associated virus AAV2/9. The levels of exogenous TFEB were analyzed using qPCR and Western blot. Proteins involved in autophagy, levels of huntingtin, and striatal-enriched proteins were examined using biochemical and/or immunohistochemical methods. Results: In HD mice expressing TFEB-HA, HA immunoreactivity distributed throughout the striatum in neuronal cell bodies and processes and preferentially in neuronal nuclei and overlapped with a loss of DARPP32 immunoreactivity. TFEB-HA mRNA and protein were detected in striatal lysates. There were increased levels of proteins involved with autophagosome/lysosome activity including LAMP-2A, LC3II, and cathepsin D and reduced levels of mutant HTT and the striatal enriched proteins DARPP32 and PDE10A. Compared to WT mice, HDQ175/Q7 mice had elevated levels of the ER stress protein GRP78/BiP and with TFEB-HA expression, increased levels of the astrocyte marker GFAP and pro-caspase 3. Conclusion: These results suggest that TFEB expression in the striatum of HDQ175/Q7 mice stimulates autophagy and lysosome activity, and lowers mHTT, but may also increase a neuronal stress response.Publication The regulation of N-terminal Huntingtin (Htt552) accumulation by Beclin1(Nature Publishing Group, 2012) Wu, Jun-chao; Lin, Fang; Qi, Lin; Wang, Yan; Kegel, Kimberly; Yoder, Jennifer; DiFiglia, Marian; Qin, Zheng-hongAim: Huntingtin protein (Htt) was a neuropathological hallmark in human Huntington's Disease. The study aimed to investigate whether the macroautophagy regulator, Beclin1, was involved in the degradation of Htt. Methods: PC12 cells and primary cultured brain neurons of rats were examined. pDC316 adenovirus shuttle plasmid was used to mediate the expression of wild-type Htt-18Q-552 or mutant Htt-100Q-552 in PC12 cells. The expression of the autophagy-related proteins LC3 II and Beclin1, as well as the lysosome-associated enzymes Cathepsin B and L was evaluated using Western blotting. The locations of Beclin1 and Htt were observed with immunofluorescence and confocal microscope. Results: Htt552 expression increased the expression of LC3 II, Beclin1, cathepsin B and L in autophagy/lysosomal degradation pathway. Treatment with the autophagy inhibitor 3-MA or the proteasome inhibitors lactacystin and MG-132 increased Htt552 levels in PC12 cells infected with Ad-Htt-18Q-552 or Ad-Htt-100Q-552. The proteasome inhibitor caused a higher accumulation of Htt552-18Q than Htt552-100Q, and the autophagy inhibitor resulted in a higher accumulation of Htt552-100Q than Htt552-18Q. Similar results were observed in primary cultured neurons infected with adenovirus. In Htt552-expressing cells, Beclin1 was redistributed from the nucleus to the cytoplasm. Htt siRNA prevented Beclin1 redistribution in starvation conditions. Blockade of Beclin1 nuclear export by leptomycin B or Beclin1 deficiency caused by RNA interference induced the formation of mHtt552 aggregates. Conclusion: Beclin1 regulates the accumulation of Htt via macroautophagy.Publication Rapamycin prevents the mutant huntingtin-suppressed GLT-1 expression in cultured astrocytes(Nature Publishing Group, 2012) Chen, Lei-lei; Wu, Jun-chao; Wang, Lin-hui; Wang, Jin; Qin, Zheng-hong; DiFiglia, Marian; Lin, FangAim: To investigate the effects of rapamycin on glutamate uptake in cultured rat astrocytes expressing N-terminal 552 residues of mutant huntingtin (Htt-552). Methods: Methods: Primary astrocyte cultures were prepared from the cortex of postnatal rat pups. An astrocytes model of Huntington's disease was established using the astrocytes infected with adenovirus carrying coden gene of N-terminal 552 residues of Huntingtin. The protein levels of glutamate transporters GLT-1 and GLAST, the autophagic marker microtubule-associated protein 1A/1B-light chain 3 (LC3) and the autophagy substrate p62 in the astrocytes were examined using Western blotting. The mRNA expression levels of GLT-1 and GLAST in the astrocytes were determined using Real-time PCR. 3H]glutamate uptake by the astrocytes was measured with liquid scintillation counting. Results: The expression of mutant Htt-552 in the astrocytes significantly decreased both the mRNA and protein levels of GLT-1 but not those of GLAST. Furthermore, Htt-552 significantly reduced 3H]glutamate uptake by the astrocytes. Treatment with the autophagy inhibitor 3-MA (10 mmol/L) significantly increased the accumulation of mutant Htt-552, and reduced the expression of GLT-1 and 3H]glutamate uptake in the astrocytes. Treatment with the autophagy stimulator rapamycin (0.2 mg/mL) significantly reduced the accumulation of mutant Htt-552, and reversed the changes in GLT-1 expression and 3H]glutamate uptake in the astrocytes. Conclusion: Rapamcin, an autophagy stimulator, can prevent the suppression of GLT-1 expression and glutamate uptake by mutant Htt-552 in cultured astrocytes.Publication Behavioral deficits, early gliosis, dysmyelination and synaptic dysfunction in a mouse model of mucolipidosis IV(BioMed Central, 2014) Grishchuk, Yulia; Sri, Sarmi; Rudinskiy, Nikita; Ma, Weiyuan; Stember, Katherine G; Cottle, Matthew W; Sapp, Ellen; DiFiglia, Marian; Muzikansky, Alona; Betensky, Rebecca; Wong, Andrew M S; Bacskai, Brian; Hyman, Bradley; Kelleher, Raymond; Cooper, Jonathan D; Slaugenhaupt, SusanMucolipidosis IV (MLIV) is caused by mutations in the gene MCOLN1. Patients with MLIV have severe neurologic deficits and very little is known about the brain pathology in this lysosomal disease. Using an accurate mouse model of mucolipidosis IV, we observed early behavioral deficits which were accompanied by activation of microglia and astrocytes. The glial activation that persisted during the course of disease was not accompanied by neuronal loss even at the late stage. In vivo [Ca2+]-imaging revealed no changes in resting [Ca2+] levels in Mcoln1−/− cortical neurons, implying their physiological health. Despite the absence of neuron loss, we observed alterations in synaptic plasticity, as indicated by elevated paired-pulse facilitation and enhanced long-term potentiation. Myelination deficits and severely dysmorphic corpus callosum were present early and resembled white matter pathology in mucolipidosis IV patients. These results indicate the early involvement of glia, and challenge the traditional view of mucolipidosis IV as an overtly neurodegenerative condition. Electronic supplementary material The online version of this article (doi:10.1186/s40478-014-0133-7) contains supplementary material, which is available to authorized users.Publication Glucose transporter 3 is a rab11-dependent trafficking cargo and its transport to the cell surface is reduced in neurons of CAG140 Huntington’s disease mice(BioMed Central, 2014) McClory, Hollis; Williams, Dana; Sapp, Ellen; Gatune, Leah W; Wang, Ping; DiFiglia, Marian; Li, XueyiHuntington’s disease (HD) disturbs glucose metabolism in the brain by poorly understood mechanisms. HD neurons have defective glucose uptake, which is attenuated upon enhancing rab11 activity. Rab11 regulates numerous receptors and transporters trafficking onto cell surfaces; its diminished activity in HD cells affects the recycling of transferrin receptor and neuronal glutamate/cysteine transporter EAAC1. Glucose transporter 3 (Glut3) handles most glucose uptake in neurons. Here we investigated rab11 involvement in Glut3 trafficking. Glut3 was localized to rab11 positive puncta in primary neurons and immortalized striatal cells by immunofluorescence labeling and detected in rab11-enriched endosomes immuno-isolated from mouse brain by Western blot. Expression of dominant active and negative rab11 mutants in clonal striatal cells altered the levels of cell surface Glut3 suggesting a regulation by rab11. About 4% of total Glut3 occurred at the cell surface of primary WT neurons. HD140Q/140Q neurons had significantly less cell surface Glut3 than did WT neurons. Western blot analysis revealed comparable levels of Glut3 in the striatum and cortex of WT and HD140Q/140Q mice. However, brain slices immunolabeled with an antibody recognizing an extracellular epitope to Glut3 showed reduced surface expression of Glut3 in the striatum and cortex of HD140Q/140Q mice compared to that of WT mice. Surface labeling of GABAα1 receptor, which is not dependent on rab11, was not different between WT and HD140Q/140Q mouse brain slices. These data define Glut3 to be a rab11-dependent trafficking cargo and suggest that impaired Glut3 trafficking arising from rab11 dysfunction underlies the glucose hypometabolism observed in HD.Publication The Role of Chaperone-Mediated Autophagy in Huntingtin Degradation(Public Library of Science, 2012) Qi, Lin; Lin, Fang; Zhang, Xing-Ding; Wu, Jun-Chao; Wang, Jin; DiFiglia, Marian; Qin, Zheng-HongHuntington Disease (HD) is caused by an abnormal expansion of polyQ tract in the protein named huntingtin (Htt). HD pathology is featured by accumulation and aggregation of mutant Htt in striatal and cortical neurons. Aberrant Htt degradation is implicated in HD pathogenesis. The aim of this study was to investigate the regulatory role of chaperone-mediated autophagy (CMA) components, heat shock protein cognate 70 (Hsc70) and lysosome-associated protein 2A (LAMP-2A) in degradation of Htt fragment 1-552aa (Htt-552). A cell model of HD was produced by overexpression of Htt-552 with adenovirus. The involvement of CMA components in degradation of Htt-552 was determined with over-expression or silencing of Hsc70 and LAMP-2A. The results confirmed previous reports that both macroautophagy and CMA were involved in degradation of Htt-552. Changing the levels of CMA-related proteins affected the accumulation of Htt-552. The lysosomal binding and luminal transport of Htt-552 was demonstrated by incubation of Htt-552 with isolated lysosomes. Expansion of the polyQ tract in Htt-552 impaired its uptake and degradation by lysosomes. Mutation of putative KFERQ motif in wild-type Htt-552 interfered with interactions between Htt-552 and Hsc70. Endogenous Hsc70 and LAMP-2A interacted with exogenously expressed Htt-552. Modulating the levels of CMA related proteins degraded endogenous full-length Htt. These studies suggest that Hsc70 and LAMP-2A through CMA play a role in the clearance of Htt and suggest a novel strategy to target the degradation of mutant Htt.Publication The mTOR Kinase Inhibitor Everolimus Decreases S6 Kinase Phosphorylation But Fails to Reduce Mutant Huntingtin Levels in Brain and is not Neuroprotective in the R6/2 Mouse Model of Huntington's Disease(BioMed Central, 2010) Fox, Jonathan H; Connor, Teal; Dorsey, Kate; Kama, Jibrin A; Bleckmann, Dorothee; Betschart, Claudia; Hoyer, Daniel; Frentzel, Stefan; Paganetti, Paolo; Chopra, Vanita; DiFiglia, Marian; Hersch, StevenBackground: Huntington's disease (HD) is a progressive neurodegenerative disorder caused by a CAG repeat expansion within the huntingtin gene. Mutant huntingtin protein misfolds and accumulates within neurons where it mediates its toxic effects. Promoting mutant huntingtin clearance by activating macroautophagy is one approach for treating Huntington's disease (HD). In this study, we evaluated the mTOR kinase inhibitor and macroautophagy promoting drug everolimus in the R6/2 mouse model of HD. Results: Everolimus decreased phosphorylation of the mTOR target protein S6 kinase indicating brain penetration. However, everolimus did not activate brain macroautophagy as measured by LC3B Western blot analysis. Everolimus protected against early declines in motor performance; however, we found no evidence for neuroprotection as determined by brain pathology. In muscle but not brain, everolimus significantly decreased soluble mutant huntingtin levels. Conclusions: Our data suggests that beneficial behavioral effects of everolimus in R6/2 mice result primarily from effects on muscle. Even though everolimus significantly modulated its target brain S6 kinase, this did not decrease mutant huntingtin levels or provide neuroprotection.Publication HttQ111/+ Huntington’s Disease Knock-in Mice Exhibit Brain Region-Specific Morphological Changes and Synaptic Dysfunction(IOS Press, 2018) Kovalenko, Marina; Milnerwood, Austen; Giordano, James; St. Claire, Jason; Guide, Jolene R.; Stromberg, Mary; Gillis, Tammy; Sapp, Ellen; DiFiglia, Marian; MacDonald, Marcy; Carroll, Jeffrey B.; Lee, Jong-Min; Tappan, Susan; Raymond, Lynn; Wheeler, VanessaBackground: Successful disease-modifying therapy for Huntington’s disease (HD) will require therapeutic intervention early in the pathogenic process. Achieving this goal requires identifying phenotypes that are proximal to the HTT CAG repeat expansion. Objective: To use Htt CAG knock-in mice, precise genetic replicas of the HTT mutation in patients, as models to study proximal disease events. Methods: Using cohorts of B6J.HttQ111/+ mice from 2 to 18 months of age, we analyzed pathological markers, including immunohistochemistry, brain regional volumes and cortical thickness, CAG instability, electron microscopy of striatal synapses, and acute slice electrophysiology to record glutamatergic transmission at striatal synapses. We also incorporated a diet perturbation paradigm for some of these analyses. Results: B6J.HttQ111/+ mice did not exhibit significant neurodegeneration or gliosis but revealed decreased striatal DARPP-32 as well as subtle but regional-specific changes in brain volumes and cortical thickness that parallel those in HD patients. Ultrastructural analyses of the striatum showed reduced synapse density, increased postsynaptic density thickness and increased synaptic cleft width. Acute slice electrophysiology showed alterations in spontaneous AMPA receptor-mediated postsynaptic currents, evoked NMDA receptor-mediated excitatory postsynaptic currents, and elevated extrasynaptic NMDA currents. Diet influenced cortical thickness, but did not impact somatic CAG expansion, nor did it show any significant interaction with genotype on immunohistochemical, brain volume or cortical thickness measures. Conclusions: These data show that a single HttQ111 allele is sufficient to elicit brain region-specific morphological changes and early neuronal dysfunction, highlighting an insidious disease process already apparent in the first few months of life.