Person: Weir, Gordon
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Weir
First Name
Gordon
Name
Weir, Gordon
17 results
Search Results
Now showing 1 - 10 of 17
Publication Long-Term Implant Fibrosis Prevention in Rodents and Non-Human Primates Using Localized Deliverable Crystals(Nature Publishing Group, 2019-06-24) Farah, Shady; Doloff, Joshua; Han, Hye Jung; Olafson, Katy; McAvoy, Malia; Graham, Adam; Langer, Robert; Anderson, Daniel; Sadraei, Atieh; Vyas, Keval; Tam, Hok Hei; Holliser-Locke, Jennifer; Kowalski, Piotr; Griffin, Marissa; Ashley, Meng; McGarrigle, James; Oberholzer, Jose; Weir, Gordon; Greiner, DaleImplantable medical devices have revolutionized modern medicine. However, immune-mediated foreign body response (FBR) to the materials of these devices can limit their function or even induce failure. Here we describe long-term controlled release formulations for local anti-inflammatory release through the development of compact, solvent-free crystals. The compact lattice structure of these crystals allows for very slow, surface dissolution and high drug density. These formulations suppress FBR in both rodents and non-human primates for at least 1.3 years and 6 months, respectively. Formulations inhibited fibrosis across multiple implant sites—subcutaneous, intraperitoneal and intramuscular. In particular incorporation of GW2580, a Colony Stimulating Factor 1 Receptor (CSF1R) inhibitor, into a range of devices including human islet microencapsulation systems, electrode-based continuous glucose-sensing monitors and muscle-stimulating devices, inhibits fibrosis, thereby allowing for extended function. We believe that local, long-term controlled release with the crystal formulations described here enhances and extends function in a range of medical devices and provides a generalized solution to the local immune response to implanted biomaterials.Publication β-Cell Failure in Type 2 Diabetes: Postulated Mechanisms and Prospects for Prevention and Treatment(American Diabetes Association, 2014) Halban, Philippe A.; Polonsky, Kenneth S.; Bowden, Donald W.; Hawkins, Meredith A.; Ling, Charlotte; Mather, Kieren J.; Powers, Alvin C.; Rhodes, Christopher J.; Sussel, Lori; Weir, GordonOBJECTIVE This article examines the foundation of β-cell failure in type 2 diabetes (T2D) and suggests areas for future research on the underlying mechanisms that may lead to improved prevention and treatment. RESEARCH DESIGN AND METHODS A group of experts participated in a conference on 14–16 October 2013 cosponsored by the Endocrine Society and the American Diabetes Association. A writing group prepared this summary and recommendations. RESULTS The writing group based this article on conference presentations, discussion, and debate. Topics covered include genetic predisposition, foundations of β-cell failure, natural history of β-cell failure, and impact of therapeutic interventions. CONCLUSIONS β-Cell failure is central to the development and progression of T2D. It antedates and predicts diabetes onset and progression, is in part genetically determined, and often can be identified with accuracy even though current tests are cumbersome and not well standardized. Multiple pathways underlie decreased β-cell function and mass, some of which may be shared and may also be a consequence of processes that initially caused dysfunction. Goals for future research include to 1) impact the natural history of β-cell failure; 2) identify and characterize genetic loci for T2D; 3) target β-cell signaling, metabolic, and genetic pathways to improve function/mass; 4) develop alternative sources of β-cells for cell-based therapy; 5) focus on metabolic environment to provide indirect benefit to β-cells; 6) improve understanding of the physiology of responses to bypass surgery; and 7) identify circulating factors and neuronal circuits underlying the axis of communication between the brain and β-cells.Publication The Challenges of First-in-Human Stem Cell Clinical Trials: What Does This Mean for Ethics and Institutional Review Boards?(Elsevier, 2018) Barker, Roger A.; Carpenter, Melissa K.; Forbes, Stuart; Goldman, Steven A.; Jamieson, Catriona; Murry, Charles E.; Takahashi, Jun; Weir, GordonStem cell-based clinical interventions are increasingly advancing through preclinical testing and approaching clinical trials. The complexity and diversity of these approaches, and the confusion created by unproven and untested stem cell-based “therapies,” create a growing need for a more comprehensive review of these early-stage human trials to ensure they place the patients at minimal risk of adverse events but are also based on solid evidence of preclinical efficacy with a clear scientific rationale for that effect. To address this issue and supplement the independent review process, especially that of the ethics and institutional review boards who may not be experts in stem cell biology, the International Society for Stem Cell Research (ISSCR) has developed a set of practical questions to cover the major issues for which clear evidence-based answers need to be obtained before approving a stem cell-based trial.Publication Thyroid Hormone Promotes Postnatal Rat Pancreatic β-Cell Development and Glucose-Responsive Insulin Secretion Through MAFA(American Diabetes Association, 2013) Aguayo-Mazzucato, Cristina; Zavacki, Ann; Marinelarena, Alejandra; Hollister-Lock, Jennifer; El Khattabi, Ilham; Marsili, Alessandro; Weir, Gordon; Sharma, Arun J.; Larsen, P.; Bonner-Weir, SusanNeonatal β cells do not secrete glucose-responsive insulin and are considered immature. We previously showed the transcription factor MAFA is key for the functional maturation of β cells, but the physiological regulators of this process are unknown. Here we show that postnatal rat β cells express thyroid hormone (TH) receptor isoforms and deiodinases in an age-dependent pattern as glucose responsiveness develops. In vivo neonatal triiodothyronine supplementation and TH inhibition, respectively, accelerated and delayed metabolic development. In vitro exposure of immature islets to triiodothyronine enhanced the expression of Mafa, the secretion of glucose-responsive insulin, and the proportion of responsive cells, all of which are effects that were abolished in the presence of dominant-negative Mafa. Using chromatin immunoprecipitation and electrophoretic mobility shift assay, we show that TH has a direct receptor-ligand interaction with the Mafa promoter and, using a luciferase reporter, that this interaction was functional. Thus, TH can be considered a physiological regulator of functional maturation of β cells via its induction of Mafa.Publication Sustained NF-κB Activation and Inhibition in β-Cells Have Minimal Effects on Function and Islet Transplant Outcomes(Public Library of Science, 2013) King, Aileen J. F.; Guo, Yongjing; Cai, Dongsheng; Hollister-Lock, Jennifer; Morris, Brooke; Salvatori, Alison; Corbett, John A.; Bonner-Weir, Susan; Weir, Gordon; Shoelson, StevenThe activation of the transcription factor NF-κB leads to changes in expression of many genes in pancreatic β-cells. However, the role of NF-κB activation in islet transplantation has not been fully elucidated. The aim of the present study was to investigate whether the state of NF-κB activation would influence the outcome of islet transplantation. Transgenic mice expressing a dominant active IKKβ (constitutively active) or a non-degradable form of IκBα (constitutive inhibition) under control of the rat insulin promoter were generated. Islets from these mice were transplanted into streptozotocin diabetic mice in suboptimal numbers. Further, the effects of salicylate (an inhibitor of NF-κB) treatment of normal islets prior to transplantation, and the effects of salicylate administration to mice prior to and after islet implantation were evaluated. Transplantation outcomes were not affected using islets expressing a non-degradable form of IκBα when compared to wild type controls. However, the transplantation outcomes using islets isolated from mice expressing a constitutively active mutant of NF-κB were marginally worse, although no aberrations of islet function in vitro could be detected. Salicylate treatment of normal islets or mice had no effect on transplantation outcome. The current study draws attention to the complexities of NF-κB in pancreatic beta cells by suggesting that they can adapt with normal or near normal function to both chronic activation and inhibition of this important transcription factor.Publication Adenosine kinase inhibition selectively promotes rodent and porcine islet β-cell replication(Proceedings of the National Academy of Sciences, 2012) Annes, J. P.; Ryu, J. H.; Lam, K.; Carolan, Peter; Utz, K.; Hollister-Lock, J.; Arvanites, Anthony C.; Rubin, Lee; Weir, Gordon; Melton, DouglasDiabetes is a pathological condition characterized by relative insulin deficiency, persistent hyperglycemia, and, consequently, diffuse micro- and macrovascular disease. One therapeutic strategy is to amplify insulin-secretion capacity by increasing the number of the insulin-producing β cells without triggering a generalized proliferative response. Here, we present the development of a small-molecule screening platform for the identification of molecules that increase β-cell replication. Using this platform, we identify a class of compounds [adenosine kinase inhibitors (ADK-Is)] that promote replication of primary β cells in three species (mouse, rat, and pig). Furthermore, the replication effect of ADK-Is is cell type-selective: treatment of islet cell cultures with ADK-Is increases replication of β cells but not that of α cells, PP cells, or fibroblasts. Short-term in vivo treatment with an ADK-I also increases β-cell replication but not exocrine cell or hepatocyte replication. Therefore, we propose ADK inhibition as a strategy for the treatment of diabetes.Publication Islet β cell mass in diabetes and how it relates to function, birth, and death(Blackwell Publishing Ltd, 2013) Weir, Gordon; Bonner-Weir, SusanIn type 1 diabetes (T1D) β cell mass is markedly reduced by autoimmunity. Type 2 diabetes (T2D) results from inadequate β cell mass and function that can no longer compensate for insulin resistance. The reduction of β cell mass in T2D may result from increased cell death and/or inadequate birth through replication and neogenesis. Reduction in mass allows glucose levels to rise, which places β cells in an unfamiliar hyperglycemic environment, leading to marked changes in their phenotype and a dramatic loss of glucose-stimulated insulin secretion (GSIS), which worsens as glucose levels climb. Toxic effects of glucose on β cells (glucotoxicity) appear to be the culprit. This dysfunctional insulin secretion can be reversed when glucose levels are lowered by treatment, a finding with therapeutic significance. Restoration of β cell mass in both types of diabetes could be accomplished by either β cell regeneration or transplantation. Learning more about the relationships between β cell mass, turnover, and function and finding ways to restore β cell mass are among the most urgent priorities for diabetes research.Publication β-cell dedifferentiation in diabetes is important, but what is it?(Landes Bioscience, 2013) Weir, Gordon; Aguayo-Mazzucato, Cristina; Bonner-Weir, SusanThis commentary discusses the concept of β-cell dedifferentiation in diabetes, which is important but not well defined. A broad interpretation is that a state of differentiation has been lost, which means changes in gene expression as well as in structural and functional elements. Thus, a fully mature healthy β cell will have its unique differentiation characteristics, but maturing cells and old β cells will have different patterns of gene expression and might therefore be considered as dedifferentiated. The meaning of dedifferentiation is now being debated because β cells in the diabetic state lose components of their differentiated state, which results in severe dysfunction of insulin secretion. The major cause of this change is thought to be glucose toxicity (glucotoxicity) and that lowering glucose levels with treatment results in some restoration of function. An issue to be discussed is whether dedifferentiated β cells return to a multipotent precursor cell phenotype or whether they follow a different pathway of dedifferentiation.Publication Long-term persistence and development of induced pancreatic beta cells generated by lineage conversion of acinar cells(Nature Publishing Group, 2014) Li, Weida; Cavelti-Weder, Claudia; Zhang, Yinying; Clement, Kendell; Donovan, Scott; Gonzalez, Gabriel; Zhu, Jiang; Stemann, Marianne; Xu, Ke; Hashimoto, Tatsu; Yamada, Takatsugu; Nakanishi, Mio; Zhang, Yuemei; Zeng, Samuel; Gifford, David Kenneth; Meissner, Alexander; Weir, Gordon; Zhou, QiaoDirect lineage conversion is a promising approach to generate therapeutically important cell types for disease modeling and tissue repair. However, the survival and function of lineage-reprogrammed cells in vivo over the long term has not been examined. Here, using an improved method for in vivo conversion of adult mouse pancreatic acinar cells toward beta cells, we show that induced beta cells persist for up to 13 months (the length of the experiment), form pancreatic islet–like structures and support normoglycemia in diabetic mice. Detailed molecular analyses of induced beta cells over 7 months reveal that global DNA methylation changes occur within 10 d, whereas the transcriptional network evolves over 2 months to resemble that of endogenous beta cells and remains stable thereafter. Progressive gain of beta-cell function occurs over 7 months, as measured by glucose-regulated insulin release and suppression of hyperglycemia. These studies demonstrate that lineage-reprogrammed cells persist for >1 year and undergo epigenetic, transcriptional, anatomical and functional development toward a beta-cell phenotype.Publication Dynamic development of the pancreas from birth to adulthood(Taylor & Francis, 2016) Bonner-Weir, Susan; Weir, Gordon; Aguayo-Mazzucato, CristinaAfter birth the endocrine pancreas continues its development, a complex process that involves both the maturation of islet cells and a marked expansion of their numbers. New beta cells are formed both by duplication of pre-existing cells and by new differentiation (neogenesis) across the first postnatal weeks, with the result of beta cells of different stages of maturation even after weaning. Improving our understanding of this period of beta cell expansion could provide valuable therapeutic insights.