Person:
Rainville, James

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Rainville

First Name

James

Name

Rainville, James

Search Results

Now showing 1 - 3 of 3
  • Publication
    The Accuracy of the Physical Examination for the Diagnosis of Midlumbar and Low Lumbar Nerve Root Impingement
    (Ovid Technologies (Wolters Kluwer Health), 2011) Suri, Pradeep; Rainville, James; Katz, Jeffrey; Jouve, Cristin; Hartigan, Carol; Limke, Janet; Pena, Enrique; Li, Ling; Swaim, Bryan; Hunter, David
    Study Design: Cross-sectional study with prospective recruitment. Objective: To determine the accuracy of the physical examination for the diagnosis of midlumbar nerve root impingement (L2, L3, or L4), low lumbar nerve root impingement (L5 or S1) and level-specific lumbar nerve root impingement on magnetic resonance imaging (MRI), using individual tests and combinations of tests. Summary of Background Data: The sensitivity and specificity of the physical examination for the localization of nerve root impingement has not been previously studied. Methods: Sensitivities, specificities and LRs were calculated for the ability of individual tests and test combinations to predict the presence or absence of nerve root impingement at midlumbar, low lumbar, and specific nerve root levels. Results: LRs ≥5.0 indicate moderate to large changes from pre-test probability of nerve root impingement to post-test probability. For the diagnosis of midlumbar impingement, the femoral stretch test (FST), crossed femoral stretch test (CFST), medial ankle pinprick sensation, and patellar reflex testing demonstrated LRs ≥5.0 (LR ∞). LRs ≥5.0 were seen with the combinations of FST and either patellar reflex testing (LR 7.0; 95% CI 2.3–21), or the sit-to-stand test (LR ∞). For the diagnosis of low lumbar impingement, the Achilles reflex test demonstrated a LR ≥5.0 (LR 7.1; CI 0.96–53); test combinations did not increase LRs. For the diagnosis of level-specific impingement, LRs ≥5.0 were seen for anterior thigh sensation at L2 (LR 13; 95% CI 1.8–87); FST at L3 (LR 5.7 ; 95% CI 2.3–4.4); patellar reflex testing (LR 7.7; 95% CI 1.7–35), medial ankle sensation (LR ∞), or CFST (LR 13; 95% CI 1.8–87) at L4; and hip abductor strength at L5(LR 11; 95% CI 1.3–84). Test combinations increased LRs for level-specific root impingement at the L4 level only. Conclusions: Individual physical examination tests may provide clinical information which substantially alters the likelihood that midlumbar impingement, low lumbar impingement, or level-specific impingement is present. Test combinations improve diagnostic accuracy for midlumbar impingement.
  • Publication
    Does lumbar spinal degeneration begin with the anterior structures? A study of the observed epidemiology in a community-based population
    (Springer Science and Business Media LLC, 2011-09-13) Suri, Pradeep; Miyakoshi, Asako; Hunter, David; Jarvik, Jeffrey G; Rainville, James; Guermazi, Ali; Li, Ling; Katz, Jeffrey
    Background: Prior studies that have concluded that disk degeneration uniformly precedes facet degeneration have been based on convenience samples of individuals with low back pain. We conducted a study to examine whether the view that spinal degeneration begins with the anterior spinal structures is supported by epidemiologic observations of degeneration in a community-based population. Methods: 361 participants from the Framingham Heart Study were included in this study. The prevalences of anterior vertebral structure degeneration (disk height loss) and posterior vertebral structure degeneration (facet joint osteoarthritis) were characterized by CT imaging. The cohort was divided into the structural subgroups of participants with 1) no degeneration, 2) isolated anterior degeneration (without posterior degeneration), 3) combined anterior and posterior degeneration, and 4) isolated posterior degeneration (without anterior structure degeneration). We determined the prevalence of each degeneration pattern by age group < 45, 45-54, 55-64, ≥65. In multivariate analyses we examined the association between disk height loss and the response variable of facet joint osteoarthritis, while adjusting for age, sex, BMI, and smoking. Results: As the prevalence of the no degeneration and isolated anterior degeneration patterns decreased with increasing age group, the prevalence of the combined anterior/posterior degeneration pattern increased. 22% of individuals demonstrated isolated posterior degeneration, without an increase in prevalence by age group. Isolated posterior degeneration was most common at the L5-S1 and L4-L5 spinal levels. In multivariate analyses, disk height loss was independently associated with facet joint osteoarthritis, as were increased age (years), female sex, and increased BMI (kg/m2), but not smoking. Conclusions: The observed epidemiology of lumbar spinal degeneration in the community-based population is consistent with an ordered progression beginning in the anterior structures, for the majority of individuals. However, some individuals demonstrate atypical patterns of degeneration, beginning in the posterior joints. Increased age and BMI, and female sex may be related to the occurrence of isolated posterior degeneration in these individuals.
  • Publication
    Acute low back pain is marked by variability: An internet-based pilot study
    (Springer Science and Business Media LLC, 2011-10-05) Suri, Pradeep; Rainville, James; Fitzmaurice, Garrett; Katz, Jeffrey; Jamison, Robert; Martha, Julia; Hartigan, Carol; Limke, Janet; Jouve, Cristin; Hunter, David
    Background: Pain variability in acute LBP has received limited study. The objectives of this pilot study were to characterize fluctuations in pain during acute LBP, to determine whether self-reported 'flares' of pain represent discrete periods of increased pain intensity, and to examine whether the frequency of flares was associated with back-related disability outcomes. Methods: We conducted a cohort study of acute LBP patients utilizing frequent serial assessments and Internet-based data collection. Adults with acute LBP (lasting ≤3 months) completed questionnaires at the time of seeking care, and at both 3-day and 1-week intervals, for 6 weeks. Back pain was measured using a numerical pain rating scale (NPRS), and disability was measured using the Oswestry Disability Index (ODI). A pain flare was defined as 'a period of increased pain lasting at least 2 hours, when your pain intensity is distinctly worse than it has been recently'. We used mixed-effects linear regression to model longitudinal changes in pain intensity, and multivariate linear regression to model associations between flare frequency and disability outcomes. Results: 42 of 47 participants (89%) reported pain flares, and the average number of discrete flare periods per patient was 3.5 over 6 weeks of follow-up. More than half of flares were less than 4 hours in duration, and about 75% of flares were less than one day in duration. A model with a quadratic trend for time best characterized improvements in pain. Pain decreased rapidly during the first 14 days after seeking care, and leveled off after about 28 days. Patients who reported a pain flare experienced an almost 3-point greater current NPRS than those not reporting a flare (mean difference [SD] 2.70 [0.11]; p < 0.0001). Higher flare frequency was independently associated with a higher final ODI score (ß [SE} 0.28 (0.08); p = 0.002). Conclusions: Acute LBP is characterized by variability. Patients with acute LBP report multiple distinct flares of pain, which correspond to discrete increases in pain intensity. A higher flare frequency is associated with worse disability outcomes.