Person: Koytiger, Grigoriy
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Koytiger
First Name
Grigoriy
Name
Koytiger, Grigoriy
1 results
Search Results
Now showing 1 - 1 of 1
Publication Biophysical Prediction of Protein-Peptide Interactions and Signaling Networks Using Machine Learning(Springer Science and Business Media LLC, 2020-01-06) Cunningham, Joseph; Koytiger, Grigoriy; Sorger, Peter; AlQuraishi, MohammedIn mammalian cells, much of signal transduction is mediated by weak protein-protein interactions between globular peptide-binding domains (PBDs) and unstructured peptidic motifs in partner proteins. The number and diversity of these PBDs (over 1,800 are known), low binding affinities, and sensitivity of binding properties to minor sequence variation represent a substantial challenge to experimental and computational analysis of PBD specificity and the networks PBDs create. Here we introduce a bespoke machine learning approach, hierarchical statistical mechanical modelling (HSM), capable of accurately predicting the affinities of PBD-peptide interactions across multiple protein families. By synthesizing biophysical priors within a modern machine learning framework, HSM outperforms existing computational methods and high-throughput experimental assays. HSM models are interpretable in familiar biophysical terms at three spatial scales: the energetics of protein-peptide binding, the multi-dentate organization of protein-protein interactions, and the global architecture of signaling networks.