Person: Badeaux, Aimee
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Badeaux
First Name
Aimee
Name
Badeaux, Aimee
2 results
Search Results
Now showing 1 - 2 of 2
Publication The histone chaperone CAF-1 safeguards somatic cell identity(2016) Cheloufi, Sihem; Elling, Ulrich; Hopfgartner, Barbara; Jung, Lucy; Murn, Jernej; Ninova, Maria; Hubmann, Maria; Badeaux, Aimee; Ang, Cheen Euong; Tenen, Danielle; Wesche, Daniel J; Abazova, Nadezhda; Hogue, Max; Tasdemir, Nilgun; Brumbaugh, Justin; Rathert, Philipp; Jude, Julian; Ferrari, Francesco; Blanco, Andres; Fellner, Michaela; Wenzel, Daniel; Zinner, Marietta; Vidal, Simon E; Bell, Oliver; Stadtfeld, Matthias; Chang, Howard Y.; Almouzni, Genevieve; Lowe, Scott W; Rinn, John; Wernig, Marius; Aravin, Alexei; Shi, Yang; Park, Peter; Penninger, Josef M; Zuber, Johannes; Hochedlinger, KonradCellular differentiation involves profound remodeling of chromatic landscapes, yet the mechanisms by which somatic cell identity is subsequently maintained remain incompletely understood. To further elucidate regulatory pathways that safeguard the somatic state, we performed two comprehensive RNAi screens targeting chromatin factors during transcription factor-mediated reprogramming of mouse fibroblasts to induced pluripotent stem cells (iPSCs). Remarkably, subunits of the chromatin assembly factor-1 (CAF-1) complex emerged as the most prominent hits from both screens, followed by modulators of lysine sumoylation and heterochromatin maintenance. Optimal modulation of both CAF-1 and transcription factor levels increased reprogramming efficiency by several orders of magnitude and facilitated iPSC formation in as little as 4 days. Mechanistically, CAF-1 suppression led to a more accessible chromatin structure at enhancer elements early during reprogramming. These changes were accompanied by a decrease in somatic heterochromatin domains, increased binding of Sox2 to pluripotency-specific targets and activation of associated genes. Notably, suppression of CAF-1 also enhanced the direct conversion of B cells into macrophages and fibroblasts into neurons. Together, our findings reveal the histone chaperone CAF-1 as a novel regulator of somatic cell identity during transcription factor-induced cell fate transitions and provide a potential strategy to modulate cellular plasticity in a regenerative setting.Publication C/EBPα Activates Pre-existing and De Novo Macrophage Enhancers during Induced Pre-B Cell Transdifferentiation and Myelopoiesis(Elsevier, 2015) van Oevelen, Chris; Collombet, Samuel; Vicent, Guillermo; Hoogenkamp, Maarten; Lepoivre, Cyrille; Badeaux, Aimee; Bussmann, Lars; Sardina, Jose Luis; Thieffry, Denis; Beato, Miguel; Shi, Yang; Bonifer, Constanze; Graf, ThomasSummary Transcription-factor-induced somatic cell conversions are highly relevant for both basic and clinical research yet their mechanism is not fully understood and it is unclear whether they reflect normal differentiation processes. Here we show that during pre-B-cell-to-macrophage transdifferentiation, C/EBPα binds to two types of myeloid enhancers in B cells: pre-existing enhancers that are bound by PU.1, providing a platform for incoming C/EBPα; and de novo enhancers that are targeted by C/EBPα, acting as a pioneer factor for subsequent binding by PU.1. The order of factor binding dictates the upregulation kinetics of nearby genes. Pre-existing enhancers are broadly active throughout the hematopoietic lineage tree, including B cells. In contrast, de novo enhancers are silent in most cell types except in myeloid cells where they become activated by C/EBP factors. Our data suggest that C/EBPα recapitulates physiological developmental processes by short-circuiting two macrophage enhancer pathways in pre-B cells.