Person: Corcoran, Ryan
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Corcoran
First Name
Ryan
Name
Corcoran, Ryan
5 results
Search Results
Now showing 1 - 5 of 5
Publication Strategies for monitoring and combating resistance to combination kinase inhibitors for cancer therapy(BioMed Central, 2017) Ahronian, Leanne; Corcoran, RyanTargeted therapies such as kinase inhibitors and monoclonal antibodies have dramatically altered cancer care in recent decades. Although these targeted therapies have improved patient outcomes in several cancer types, resistance ultimately develops to these agents. One potential strategy proposed to overcome acquired resistance involves taking repeat tumor biopsies at the time of disease progression, to identify the specific molecular mechanism driving resistance in an individual patient and to select a new agent or combination of agents capable of surmounting that specific resistance mechanism. However, recent studies sampling multiple metastatic lesions upon acquired resistance, or employing “liquid biopsy” analyses of circulating tumor DNA, have revealed that multiple, heterogeneous resistance mechanisms can emerge in distinct tumor subclones in the same patient. This heterogeneity represents a major clinical challenge for devising therapeutic strategies to overcome resistance. In many cancers, multiple drug resistance mechanisms often converge to reactivate the original pathway targeted by the drug. This convergent evolution creates an opportunity to target a common signaling node to overcome resistance. Furthermore, integration of liquid biopsy approaches into clinical practice may allow real-time monitoring of emerging resistance alterations, allowing intervention prior to standard detection of radiographic progression. In this review, we discuss recent advances in understanding tumor heterogeneity and resistance to targeted therapies, focusing on combination kinase inhibitors, and we discuss approaches to address these issues in the clinic.Publication A combinatorial strategy for treating KRAS mutant lung cancer(2016) Manchado, Eusebio; Weissmueller, Susann; Morris, John P.; Chen, Chi-Chao; Wullenkord, Ramona; Lujambio, Amaia; de Stanchina, Elisa; Poirier, John T.; Gainor, Justin; Corcoran, Ryan; Engelman, Jeffrey A; Rudin, Charles M.; Rosen, Neal; Lowe, Scott W.Therapeutic targeting of KRAS-mutant lung adenocarcinoma represents a major goal of clinical oncology. KRAS itself has proven difficult to inhibit, and the effectiveness of agents that target key KRAS effectors has been thwarted by activation of compensatory or parallel pathways that limit their efficacy as single agents. Here we take a systematic approach towards identifying combination targets for trametinib, an FDA-approved MEK inhibitor that acts downstream of KRAS to suppress signaling through the mitogen-activated protein kinase (MAPK) cascade. Informed by a short-hairpin RNA (shRNA) screen, we show that trametinib provokes a compensatory response involving the fibroblast growth factor receptor 1 (FGFR1) that leads to signaling rebound and adaptive drug resistance. As a consequence, genetic or pharmacologic inhibition of FGFR1 in combination with trametinib enhances tumor cell death in vitro and in vivo. This compensatory response shows distinct specificities – it is dominated by FGFR1 in KRAS mutant lung and pancreatic cancer cells, but is not activated or involves other mechanisms in KRAS wild-type lung and KRAS-mutant colon cancer cells. Importantly, KRAS-mutant lung cancer cells and patient tumors treated with trametinib show an increase in FRS2 phosphorylation, a biomarker of FGFR activation; this increase is abolished by FGFR1 inhibition and correlates with sensitivity to trametinib and FGFR inhibitor combinations. These results demonstrate that FGFR1 can mediate adaptive resistance to trametinib and validate a combinatorial approach for treating KRAS-mutant lung cancer.Publication Effective MAPK Inhibition is critical for therapeutic responses in colorectal cancer with BRAF mutations(Taylor & Francis, 2016) Ahronian, Leanne; Corcoran, RyanABSTRACT RAF inhibitor monotherapy is ineffective in BRAF-mutant colorectal cancer (CRC) but RAF inhibitor combinations have demonstrated improved efficacy, likely through superior suppression of MAPK signaling. The first identified mechanisms of acquired resistance to these combinations all promote MAPK reactivation, underscoring the MAPK pathway as a critical target in BRAF-mutant CRC.Publication Potential Therapeutic Strategies to Overcome Acquired Resistance to BRAF or MEK Inhibitors in BRAF Mutant Cancers(Impact Journals LLC, 2011) Corcoran, Ryan; Settleman, Jeffrey; Engelman, Jeffrey ARecent clinical trials with selective inhibitors of the BRAF and MEK kinases have shown promising results in patients with tumors harboring BRAF V600 mutations. However, as has been observed previously with similarly successful targeted therapies, acquired resistance to these agents is an emerging problem that limits their clinical benefit. Several recent studies from our laboratory and others have investigated the causes of acquired resistance to BRAF and MEK inhibitors, and multiple resistance mechanisms have been identified. Here, we review these mechanisms and suggest that they can be broadly grouped into two main classes: ERK-dependent and ERK-independent. We also propose distinct therapeutic strategies that might be employed to overcome each class of acquired resistance.Publication Resistance to checkpoint blockade therapy through inactivation of antigen presentation(Nature Publishing Group UK, 2017) Sade-Feldman, Moshe; Jiao, Yunxin J.; Chen, Jonathan; Rooney, Michael S.; Barzily-Rokni, Michal; Eliane, Jean-Pierre; Bjorgaard, Stacey L.; Hammond, Marc R.; Vitzthum, Hans; Blackmon, Shauna M.; Frederick, Dennie T.; Hazar-Rethinam, Mehlika; Nadres, Brandon A.; Van Seventer, Emily E.; Shukla, Sachet A.; Yizhak, Keren; Ray, John P.; Rosebrock, Daniel; Livitz, Dimitri; Adalsteinsson, Viktor; Getz, Gad; Duncan, Lyn; Li, Bo; Corcoran, Ryan; Lawrence, Donald; Stemmer-Rachamimov, Anat; Boland, Genevieve; Landau, Dan A.; Flaherty, Keith; Sullivan, Ryan; Hacohen, NirTreatment with immune checkpoint blockade (CPB) therapies often leads to prolonged responses in patients with metastatic melanoma, but the common mechanisms of primary and acquired resistance to these agents remain incompletely characterized and have yet to be validated in large cohorts. By analyzing longitudinal tumor biopsies from 17 metastatic melanoma patients treated with CPB therapies, we observed point mutations, deletions or loss of heterozygosity (LOH) in beta-2-microglobulin (B2M), an essential component of MHC class I antigen presentation, in 29.4% of patients with progressing disease. In two independent cohorts of melanoma patients treated with anti-CTLA4 and anti-PD1, respectively, we find that B2M LOH is enriched threefold in non-responders (~30%) compared to responders (~10%) and associated with poorer overall survival. Loss of both copies of B2M is found only in non-responders. B2M loss is likely a common mechanism of resistance to therapies targeting CTLA4 or PD1.