Person:
Eikermann-Haerter, Katharina

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Eikermann-Haerter

First Name

Katharina

Name

Eikermann-Haerter, Katharina

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Publication
    Multiparametric, Longitudinal Optical Coherence Tomography Imaging Reveals Acute Injury and Chronic Recovery in Experimental Ischemic Stroke
    (Public Library of Science, 2013) Srinivasan, Vivek J.; Mandeville, Emiri; Can, Anil; Blasi, Francesco; Climov, Mihail; Daneshmand, Ali; Lee, Jeong Hyun; Yu, Esther; Radhakrishnan, Harsha; Lo, Eng; Sakadzic, Sava; Eikermann-Haerter, Katharina; Ayata, Cenk
    Progress in experimental stroke and translational medicine could be accelerated by high-resolution in vivo imaging of disease progression in the mouse cortex. Here, we introduce optical microscopic methods that monitor brain injury progression using intrinsic optical scattering properties of cortical tissue. A multi-parametric Optical Coherence Tomography (OCT) platform for longitudinal imaging of ischemic stroke in mice, through thinned-skull, reinforced cranial window surgical preparations, is described. In the acute stages, the spatiotemporal interplay between hemodynamics and cell viability, a key determinant of pathogenesis, was imaged. In acute stroke, microscopic biomarkers for eventual infarction, including capillary non-perfusion, cerebral blood flow deficiency, altered cellular scattering, and impaired autoregulation of cerebral blood flow, were quantified and correlated with histology. Additionally, longitudinal microscopy revealed remodeling and flow recovery after one week of chronic stroke. Intrinsic scattering properties serve as reporters of acute cellular and vascular injury and recovery in experimental stroke. Multi-parametric OCT represents a robust in vivo imaging platform to comprehensively investigate these properties.
  • Thumbnail Image
    Publication
    Large arteriolar component of oxygen delivery implies safe margin of oxygen supply to cerebral tissue
    (2014) Sakadzic, Sava; Mandeville, Emiri; Gagnon, Louis; Musacchia, Joseph J.; Yaseen, Mohammad; Yücel, Meryem A.; Lefebvre, Joel; Lesage, Frédéric; Dale, Anders M.; Eikermann-Haerter, Katharina; Ayata, Cenk; Srinivasan, Vivek J.; Lo, Eng; Devor, Anna; Boas, David
    What is the organization of cerebral microvascular oxygenation and morphology that allows adequate tissue oxygenation at different activity levels? We address this question in the mouse cerebral cortex using microscopic imaging of intravascular O2 partial pressure and blood flow combined with numerical modeling. Here we show that parenchymal arterioles are responsible for 50% of the extracted O2 at baseline activity and the majority of the remaining O2 exchange takes place within the first few capillary branches. Most capillaries release little O2 at baseline acting as an O2 reserve that is recruited during increased neuronal activity or decreased blood flow. Our results challenge the common perception that capillaries are the major site of O2 delivery to cerebral tissue. The understanding of oxygenation distribution along arterio-capillary paths may have profound implications for the interpretation of BOLD fMRI signal and for evaluating microvascular O2 delivery capacity to support cerebral tissue in disease.