Person:
Organ, Chris

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Organ

First Name

Chris

Name

Organ, Chris

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Publication
    Multiple Phylogenetically Distinct Events Shaped the Evolution of Limb Skeletal Morphologies Associated with Bipedalism in the Jerboas
    (Elsevier BV, 2015) Moore, Talia Yuki; Organ, Chris; Edwards, Scott; Biewener, Andrew; Tabin, Clifford; Farish, Jenkins; Cooper, Kimberly
    Recent rapid advances in experimental biology have expanded the opportunity for interdisciplinary investigations of the evolution of form and function in non-traditional model species. However, historical divisions of philosophy and methodology between evolutionary/organismal biologists and developmental geneticists often preclude an effective merging of disciplines. In an effort to overcome these divisions, we take advantage of the extraordinary morphological diversity of the rodent superfamily Dipodoidea, including the bipedal jerboas, to experimentally study the developmental mechanisms and biomechanical performance of a remarkably divergent limb structure. Here, we place multiple limb character states in a locomotor and phylogenetic context. Whereas obligate bipedalism arose just once in the ancestor of extant jerboas, we find that digit loss, metatarsal fusion, between-limb proportions, and within-hindlimb proportions all evolved independently of one another. Digit loss occurred three times through at least two distinct developmental mechanisms, and elongation of the hindlimb relative to the forelimb is not simply due to growth mechanisms that change proportions within the hindlimb. Furthermore, we find strong evidence for punctuated evolution of allometric scaling of hindlimb elements during the radiation of Dipodoidea. Our work demonstrates the value of leveraging the evolutionary history of a clade to establish criteria for identifying the developmental genetic mechanisms of morphological diversification.
  • Publication
    Phylogenetic Rate Shifts in Feeding Time During the Evolution of Homo
    (National Academy of Sciences, 2011) Organ, Chris; Nunn, Charles; Machanda, Zarin; Wrangham, Richard
    Unique among animals, humans eat a diet rich in cooked and nonthermally processed food. The ancestors of modern humans who invented food processing (including cooking) gained critical advantages in survival and fitness through increased caloric intake. However, the time and manner in which food processing became biologically significant are uncertain. Here, we assess the inferred evolutionary consequences of food processing in the human lineage by applying a Bayesian phylogenetic outlier test to a comparative dataset of feeding time in humans and nonhuman primates. We find that modern humans spend an order of magnitude less time feeding than predicted by phylogeny and body mass (4.7% vs. predicted 48% of daily activity). This result suggests that a substantial evolutionary rate change in feeding time occurred along the human branch after the human–chimpanzee split. Along this same branch, Homo erectus shows a marked reduction in molar size that is followed by a gradual, although erratic, decline in H. sapiens. We show that reduction in molar size in early Homo (H. habilis and H. rudolfensis) is explicable by phylogeny and body size alone. By contrast, the change in molar size to H. erectus, H. neanderthalensis, and H. sapiens cannot be explained by the rate of craniodental and body size evolution. Together, our results indicate that the behaviorally driven adaptations of food processing (reduced feeding time and molar size) originated after the evolution of Homo but before or concurrent with the evolution of H. erectus, which was around 1.9 Mya.