Person:
Hung, Yin

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Hung

First Name

Yin

Name

Hung, Yin

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Publication
    Quantitative determinants of aerobic glycolysis identify flux through the enzyme GAPDH as a limiting step
    (eLife Sciences Publications, Ltd, 2014) Shestov, Alexander A; Liu, Xiaojing; Ser, Zheng; Cluntun, Ahmad A; Hung, Yin; Huang, Lei; Kim, Dongsung; Le, Anne; Yellen, Gary; Albeck, John G; Locasale, Jason W
    Aerobic glycolysis or the Warburg Effect (WE) is characterized by the increased metabolism of glucose to lactate. It remains unknown what quantitative changes to the activity of metabolism are necessary and sufficient for this phenotype. We developed a computational model of glycolysis and an integrated analysis using metabolic control analysis (MCA), metabolomics data, and statistical simulations. We identified and confirmed a novel mode of regulation specific to aerobic glycolysis where flux through GAPDH, the enzyme separating lower and upper glycolysis, is the rate-limiting step in the pathway and the levels of fructose (1,6) bisphosphate (FBP), are predictive of the rate and control points in glycolysis. Strikingly, negative flux control was found and confirmed for several steps thought to be rate-limiting in glycolysis. Together, these findings enumerate the biochemical determinants of the WE and suggest strategies for identifying the contexts in which agents that target glycolysis might be most effective. DOI: http://dx.doi.org/10.7554/eLife.03342.001
  • Thumbnail Image
    Publication
    Single Cell Imaging of Metabolism with Fluorescent Biosensors
    (2012-09-18) Hung, Yin; Yellen, Gary I.; Schwarz, Thomas; Vander Heiden, Matthew; Gaudet, Suzanne; Mootha, Vamsi
    Cells utilize various signal transduction networks to regulate metabolism. Nevertheless, a quantitative understanding of the relationship between growth factor signaling and metabolic state at the single cell level has been lacking. The signal transduction and metabolic states could vary widely among individual cells. However, such cell-to-cell variation might be masked by the bulk measurements obtained from conventional biochemical methods. To assess the spatiotemporal dynamics of metabolism in individual intact cells, we developed genetically encoded biosensors based on fluorescent proteins. As a key redox cofactor in metabolism, NADH has been implicated in the Warburg effect, the abnormal metabolism of glucose that is a hallmark of cancer cells. To date, however, sensitive and specific detection of NADH in the cytosol of individual live cells has been difficult. We engineered a fluorescent biosensor of NADH by combining a circularly permuted green fluorescent protein variant with a bacterial NADH-binding protein Rex. The optimized biosensor Peredox reports cytosolic \(NADH:NAD^+\) ratios in individual live cells and can be calibrated with exogenous lactate and pyruvate. Notably pH resistant, this biosensor can be used in several cultured and primary cell types and in a high-content imaging format. We then examined the single cell dynamics of glycolysis and energy-sensing signaling pathways using Peredox and other fluorescent biosensors: AMPKAR, a sensor of the AMPK activity; and FOXO3-FP, a fluorescently-tagged protein domain from Forkhead transcription factor FOXO3 to report on the PI3K/Akt pathway activity. With perturbation to growth factor signaling, we observed a transient response in the cytosolic \(NADH:NAD^+\) redox state. In contrast, with partial inhibition of glycolysis by iodoacetate, individual cells varied substantially in their responses, and cytosolic \(NADH:NAD^+\) ratios oscillated between high and low states with a regular, approximately half-hour period, persisting for hours. These glycolytic NADH oscillations appeared to be cell-autonomous and coincided with the activation of the PI3K/Akt pathway but not the AMPK pathway. These results suggest a dynamic coupling between growth factor signaling and metabolic parameters. Overall, this thesis presents novel optical tools to assess metabolic dynamics – and to unravel the elaborate and complex integration of glucose metabolism and signaling pathways at the single cell level.
  • Thumbnail Image
    Publication
    Akt regulation of glycolysis mediates bioenergetic stability in epithelial cells
    (eLife Sciences Publications, Ltd, 2017) Hung, Yin; Teragawa, Carolyn; Kosaisawe, Nont; Gillies, Taryn E; Pargett, Michael; Minguet, Marta; Distor, Kevin; Rocha-Gregg, Briana L; Coloff, Jonathan L.; Keibler, Mark A; Stephanopoulos, Gregory; Yellen, Gary; Brugge, Joan; Albeck, John G
    Cells use multiple feedback controls to regulate metabolism in response to nutrient and signaling inputs. However, feedback creates the potential for unstable network responses. We examined how concentrations of key metabolites and signaling pathways interact to maintain homeostasis in proliferating human cells, using fluorescent reporters for AMPK activity, Akt activity, and cytosolic NADH/NAD+ redox. Across various conditions, including glycolytic or mitochondrial inhibition or cell proliferation, we observed distinct patterns of AMPK activity, including both stable adaptation and highly dynamic behaviors such as periodic oscillations and irregular fluctuations that indicate a failure to reach a steady state. Fluctuations in AMPK activity, Akt activity, and cytosolic NADH/NAD+ redox state were temporally linked in individual cells adapting to metabolic perturbations. By monitoring single-cell dynamics in each of these contexts, we identified PI3K/Akt regulation of glycolysis as a multifaceted modulator of single-cell metabolic dynamics that is required to maintain metabolic stability in proliferating cells.