Person: Lin, Wenyu
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Lin
First Name
Wenyu
Name
Lin, Wenyu
7 results
Search Results
Now showing 1 - 7 of 7
Publication MicroRNA 130a Regulates both Hepatitis C Virus and Hepatitis B Virus Replication through a Central Metabolic Pathway(American Society for Microbiology, 2018) Duan, Xiaoqiong; Li, Shilin; Holmes, Jacinta; Tu, Zeng; Li, Yujia; Cai, Dachuan; Liu, Xiao; Li, Wenting; Yang, Chunhui; Jiao, Baihai; Schaefer, Esperance; Fusco, Dahlene; Salloum, Shadi; Chen, Limin; Lin, Wenyu; Chung, RaymondABSTRACT Hepatitis C virus (HCV) infection has been shown to regulate microRNA 130a (miR-130a) in patient biopsy specimens and in cultured cells. We sought to identify miR-130a target genes and to explore the mechanisms by which miR-130a regulates HCV and hepatitis B virus (HBV) replication. We used bioinformatics software, including miRanda, TargetScan, PITA, and RNAhybrid, to predict potential miR-130a target genes. miR-130a and its target genes were overexpressed or were knocked down by use of small interfering RNA (siRNA) or clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 guide RNA (gRNA). Selected gene mRNAs and their proteins, together with HCV replication in OR6 cells, HCV JFH1-infected Huh7.5.1 cells, and HCV JFH1-infected primary human hepatocytes (PHHs) and HBV replication in HepAD38 cells, HBV-infected NTCP-Huh7.5.1 cells, and HBV-infected PHHs, were measured by quantitative reverse transcription-PCR (qRT-PCR) and Western blotting, respectively. We selected 116 predicted target genes whose expression was related to viral pathogenesis or immunity for qPCR validation. Of these, the gene encoding pyruvate kinase in liver and red blood cell (PKLR) was confirmed to be regulated by miR-130a overexpression. miR-130a overexpression (via a mimic) knocked down PKLR mRNA and protein levels. A miR-130a inhibitor and gRNA increased PKLR expression, HCV replication, and HBV replication, while miR-130a gRNA and PKLR overexpression increased HCV and HBV replication. Supplemental pyruvate increased HCV and HBV replication and rescued the inhibition of HCV and HBV replication by the miR-130a mimic and PKLR knockdown. We concluded that miR-130a regulates HCV and HBV replication through its targeting of PKLR and subsequent pyruvate production. Our data provide novel insights into key metabolic enzymatic pathway steps regulated by miR-130a, including the steps involving PKLR and pyruvate, which are subverted by HCV and HBV replication. IMPORTANCE: We identified that miR-130a regulates the target gene PKLR and its subsequent effect on pyruvate production. Pyruvate is a key intermediate in several metabolic pathways, and we identified that pyruvate plays a key role in regulation of HCV and HBV replication. This previously unrecognized, miRNA-regulated antiviral mechanism has implications for the development of host-directed strategies to interrupt the viral life cycle and prevent establishment of persistent infection for HCV, HBV, and potentially other viral infections.Publication TRAIL Enhances Apoptosis of Human Hepatocellular Carcinoma Cells Sensitized by Hepatitis C Virus Infection: Therapeutic Implications(Public Library of Science, 2014) Jang, Jae Young; Kim, Seong-Jun; Cho, Eun Kyung; Jeong, Soung Won; Park, Eui Ju; Lee, Woong Cheul; Lee, Sae Hwan; Kim, Sang Gyune; Kim, Young Seok; Kim, Hong Soo; Kim, Boo Sung; Lin, Wenyu; Chung, RaymondHepatitis C virus (HCV) infection causes chronic liver diseases leading to hepatocellular carcinoma (HCC) and liver failure. We have previously shown that HCV sensitizes hepatocytes to mitochondrial apoptosis via the TRAIL death receptors DR4 and DR5. Although TRAIL and its receptors are selective targets for cancer therapy, their potential against HCC with chronic HCV infection has not been explored yet. Here we show that HCV induces DR4/DR5-dependent activation of caspase-8 leading to elevation of apoptotic signaling in infected cells and also present TRAIL effect in HCV-induced apoptotic signaling. HCV induced proteolytic cleavage of caspase-9 by stimulating DR4 and DR5, resulting in subsequent cleavage of caspase-3. Further, HCV-induced proteolytic cleavage in caspase-8, caspase-9, and caspase-3 was enhanced in the presence of recombinant TRAIL. HCV-induced cleavage in caspase-9 and increase in caspase-3/7 activity was completely suppressed by silencing of either DR4 or DR5. Perturbing DR4/DR5-caspase-8 signaling complex by silencing DR4 and DR5 or by chemical inhibitor specific to caspase-8 led to decrease of HCV-induced cleavage of poly(ADP-ribose) polymerase (PARP), a substrate for caspase-3 during apoptosis, indicating the functional role of caspase-8 in HCV-induced apoptotic signaling network. Furthermore, TRAIL enhanced PARP cleavage in apoptotic response induced by HCV infection, indicating the effect of TRAIL for the induction of selective apoptosis of HCC cells infected with HCV. Given the importance of apoptosis in HCC development, our data suggest that HCV-induced DR4 and DR5 may be considered as an attractive target for TRAIL therapy against HCC with chronic HCV infection.Publication EFTUD2 on innate immunity(Impact Journals LLC, 2015) Zhu, Chuanlong; Xiao, Fei; Lin, WenyuPublication HCV induces transforming growth factor β1 through activation of endoplasmic reticulum stress and the unfolded protein response(Nature Publishing Group, 2016) Chusri, Pattranuch; Kumthip, Kattareeya; Hong, Jian; Zhu, Chuanlong; Duan, Xiaoqiong; Jilg, Nikolaus; Fusco, Dahlene; Brisac, Cynthia; Schaefer, Esperance; Cai, Dachuan; Peng, Lee F.; Maneekarn, Niwat; Lin, Wenyu; Chung, RaymondHCV replication disrupts normal endoplasmic reticulum (ER) function and activates a signaling network called the unfolded protein response (UPR). UPR is directed by three ER transmembrane proteins including ATF6, IRE1, and PERK. HCV increases TGF-β1 and oxidative stress, which play important roles in liver fibrogenesis. HCV has been shown to induce TGF-β1 through the generation of reactive oxygen species (ROS) and p38 MAPK, JNK, ERK1/2, and NFκB-dependent pathways. However, the relationship between HCV-induced ER stress and UPR activation with TGF-β1 production has not been fully characterized. In this study, we found that ROS and JNK inhibitors block HCV up-regulation of ER stress and UPR activation. ROS, JNK and IRE1 inhibitors blocked HCV-activated NFκB and TGF-β1 expression. ROS, ER stress, NFκB, and TGF-β1 signaling were blocked by JNK specific siRNA. Knockdown IRE1 inhibited JFH1-activated NFκB and TGF-β1 activity. Knockdown of JNK and IRE1 blunted JFH1 HCV up-regulation of NFκB and TGF-β1 activation. We conclude that HCV activates NFκB and TGF-β1 through ROS production and induction of JNK and the IRE1 pathway. HCV infection induces ER stress and the UPR in a JNK-dependent manner. ER stress and UPR activation partially contribute to HCV-induced NF-κB activation and enhancement of TGF-β1.Publication HELZ2 Is an IFN Effector Mediating Suppression of Dengue Virus(Frontiers Media S.A., 2017) Fusco, Dahlene; Pratt, Henry; Kandilas, Stephen; Cheon, Scarlett Se Yun; Lin, Wenyu; Cronkite, D. Alex; Basavappa, Megha; Jeffrey, Kate; Anselmo, Anthony; Sadreyev, Ruslan; Yapp, Clarence; Shi, Xu; O'Sullivan, John F.; Gerszten, Robert; Tomaru, Takuya; Yoshino, Satoshi; Satoh, Tetsurou; Chung, RaymondFlaviviral infections including dengue virus are an increasing clinical problem worldwide. Dengue infection triggers host production of the type 1 IFN, IFN alpha, one of the strongest and broadest acting antivirals known. However, dengue virus subverts host IFN signaling at early steps of IFN signal transduction. This subversion allows unbridled viral replication which subsequently triggers ongoing production of IFN which, again, is subverted. Identification of downstream IFN antiviral effectors will provide targets which could be activated to restore broad acting antiviral activity, stopping the signal to produce endogenous IFN at toxic levels. To this end, we performed a targeted functional genomic screen for IFN antiviral effector genes (IEGs), identifying 56 IEGs required for antiviral effects of IFN against fully infectious dengue virus. Dengue IEGs were enriched for genes encoding nuclear receptor interacting proteins, including HELZ2, MAP2K4, SLC27A2, HSP90AA1, and HSP90AB1. We focused on HELZ2 (Helicase With Zinc Finger 2), an IFN stimulated gene and IEG which encodes a promiscuous nuclear factor coactivator that exists in two isoforms. The two unique HELZ2 isoforms are both IFN responsive, contain ISRE elements, and gene products increase in the nucleus upon IFN stimulation. Chromatin immunoprecipitation-sequencing revealed that the HELZ2 complex interacts with triglyceride-regulator LMF1. Mass spectrometry revealed that HELZ2 knockdown cells are depleted of triglyceride subsets. We thus sought to determine whether HELZ2 interacts with a nuclear receptor known to regulate immune response and lipid metabolism, AHR, and identified HELZ2:AHR interactions via co-immunoprecipitation, found that AHR is a dengue IEG, and that an AHR ligand, FICZ, exhibits anti-dengue activity. Primary bone marrow derived macrophages from HELZ2 knockout mice, compared to wild type controls, exhibit enhanced dengue infectivity. Overall, these findings reveal that IFN antiviral response is mediated by HELZ2 transcriptional upregulation, enrichment of HELZ2 protein levels in the nucleus, and activation of a transcriptional program that appears to modulate intracellular lipid state. IEGs identified in this study may serve as both (1) potential targets for host directed antiviral design, downstream of the common flaviviral subversion point, as well as (2) possible biomarkers, whose variation, natural, or iatrogenic, could affect host response to viral infections.Publication Inhibition of HCV by the serpin antithrombin III(BioMed Central, 2012) Asmal, Mohammed; Seaman, Michael; Lin, Wenyu; Chung, Raymond; Letvin, Norman L; Geiben-Lynn, RalfBackground: Although there have been dramatic strides made recently in the treatment of chronic hepatitis C virus infection, interferon-α based therapy remains challenging for certain populations, including those with unfavorable IL28B genotypes, psychiatric co-morbidity, HIV co-infection, and decompensated liver disease. We have recently shown that ATIII, a serine protease inhibitor (serpin), has broad antiviral properties. Results: We now show that ATIII is capable of inhibiting HCV in the OR6 replicon model at micromolar concentrations. At a mechanistic level using gene-expression arrays, we found that ATIII treatment down-regulated multiple host cell signal transduction factors involved in the pathogenesis of cirrhosis and hepatocellular carcinoma, including Jun, Myc and BMP2. Using a protein interactive network analysis we found that changes in gene-expression caused by ATIII were dependent on three nodes previously implicated in HCV disease progression or HCV replication: NFκB, P38 MAPK, and ERK1/2. Conclusions: Our findings suggest that ATIII stimulates a novel innate antiviral host cell defense different from current treatment options.Publication ARF1 and GBF1 Generate a PI4P-Enriched Environment Supportive of Hepatitis C Virus Replication(Public Library of Science, 2012) Zhang, Leiliang; Hong, Zhi; Lin, Wenyu; Shao, Run-Xuan; Goto, Kaku; Hsu, Victor; Chung, RaymondCellular levels of phosphatidylinositol 4-phosphate (PI4P) have been shown to be upregulated during RNA replication of several viruses, including the HCV replicon model. However, whether PI4P is required in an infectious HCV model remains unknown. Moreover, it is not established whether the host transport machinery is sequestered by the generation of PI4P during HCV infection. Here we found that PI4P was enriched in HCV replication complexes when Huh7.5.1 cells were infected with JFH1. HCV replication was inhibited upon overexpression of the PI4P phosphatase Sac1. The PI4P kinase PI4KIII\(\beta\) was also found to be required for HCV replication. Moreover, the vesicular transport proteins ARF1 and GBF1 colocalized with PI4KIIIβ and were both required for HCV replication. During authentic HCV infection, PI4P plays an integral role in virus replication.