Person:
Grossmann, Patrick

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Grossmann

First Name

Patrick

Name

Grossmann, Patrick

Search Results

Now showing 1 - 9 of 9
  • Thumbnail Image
    Publication
    Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
    (Nature Pub. Group, 2014) Aerts, Hugo; Velazquez, Emmanuel Rios; Leijenaar, Ralph T. H.; Parmar, Chintan; Grossmann, Patrick; Cavalho, Sara; Bussink, Johan; Monshouwer, René; Haibe-Kains, Benjamin; Rietveld, Derek; Hoebers, Frank; Rietbergen, Michelle M.; Leemans, C. René; Dekker, Andre; Quackenbush, John; Gillies, Robert J.; Lambin, Philippe
    Human cancers exhibit strong phenotypic differences that can be visualized noninvasively by medical imaging. Radiomics refers to the comprehensive quantification of tumour phenotypes by applying a large number of quantitative image features. Here we present a radiomic analysis of 440 features quantifying tumour image intensity, shape and texture, which are extracted from computed tomography data of 1,019 patients with lung or head-and-neck cancer. We find that a large number of radiomic features have prognostic power in independent data sets of lung and head-and-neck cancer patients, many of which were not identified as significant before. Radiogenomics analysis reveals that a prognostic radiomic signature, capturing intratumour heterogeneity, is associated with underlying gene-expression patterns. These data suggest that radiomics identifies a general prognostic phenotype existing in both lung and head-and-neck cancer. This may have a clinical impact as imaging is routinely used in clinical practice, providing an unprecedented opportunity to improve decision-support in cancer treatment at low cost.
  • Thumbnail Image
    Publication
    Radiomic Machine-Learning Classifiers for Prognostic Biomarkers of Head and Neck Cancer
    (Frontiers Media S.A., 2015) Parmar, Chintan; Grossmann, Patrick; Rietveld, Derek; Rietbergen, Michelle M.; Lambin, Philippe; Aerts, Hugo
    Introduction: “Radiomics” extracts and mines a large number of medical imaging features in a non-invasive and cost-effective way. The underlying assumption of radiomics is that these imaging features quantify phenotypic characteristics of an entire tumor. In order to enhance applicability of radiomics in clinical oncology, highly accurate and reliable machine-learning approaches are required. In this radiomic study, 13 feature selection methods and 11 machine-learning classification methods were evaluated in terms of their performance and stability for predicting overall survival in head and neck cancer patients. Methods: Two independent head and neck cancer cohorts were investigated. Training cohort HN1 consisted of 101 head and neck cancer patients. Cohort HN2 (n = 95) was used for validation. A total of 440 radiomic features were extracted from the segmented tumor regions in CT images. Feature selection and classification methods were compared using an unbiased evaluation framework. Results: We observed that the three feature selection methods minimum redundancy maximum relevance (AUC = 0.69, Stability = 0.66), mutual information feature selection (AUC = 0.66, Stability = 0.69), and conditional infomax feature extraction (AUC = 0.68, Stability = 0.7) had high prognostic performance and stability. The three classifiers BY (AUC = 0.67, RSD = 11.28), RF (AUC = 0.61, RSD = 7.36), and NN (AUC = 0.62, RSD = 10.52) also showed high prognostic performance and stability. Analysis investigating performance variability indicated that the choice of classification method is the major factor driving the performance variation (29.02% of total variance). Conclusion: Our study identified prognostic and reliable machine-learning methods for the prediction of overall survival of head and neck cancer patients. Identification of optimal machine-learning methods for radiomics-based prognostic analyses could broaden the scope of radiomics in precision oncology and cancer care.
  • Thumbnail Image
    Publication
    Integration of TP53, DREAM, MMB-FOXM1 and RB-E2F target gene analyses identifies cell cycle gene regulatory networks
    (Oxford University Press, 2016) Fischer, Martin; Grossmann, Patrick; Padi, Megha; DeCaprio, James
    Cell cycle (CC) and TP53 regulatory networks are frequently deregulated in cancer. While numerous genome-wide studies of TP53 and CC-regulated genes have been performed, significant variation between studies has made it difficult to assess regulation of any given gene of interest. To overcome the limitation of individual studies, we developed a meta-analysis approach to identify high confidence target genes that reflect their frequency of identification in independent datasets. Gene regulatory networks were generated by comparing differential expression of TP53 and CC-regulated genes with chromatin immunoprecipitation studies for TP53, RB1, E2F, DREAM, B-MYB, FOXM1 and MuvB. RNA-seq data from p21-null cells revealed that gene downregulation by TP53 generally requires p21 (CDKN1A). Genes downregulated by TP53 were also identified as CC genes bound by the DREAM complex. The transcription factors RB, E2F1 and E2F7 bind to a subset of DREAM target genes that function in G1/S of the CC while B-MYB, FOXM1 and MuvB control G2/M gene expression. Our approach yields high confidence ranked target gene maps for TP53, DREAM, MMB-FOXM1 and RB-E2F and enables prediction and distinction of CC regulation. A web-based atlas at www.targetgenereg.org enables assessing the regulation of any human gene of interest.
  • Thumbnail Image
    Publication
    Imaging-genomics reveals driving pathways of MRI derived volumetric tumor phenotype features in Glioblastoma
    (BioMed Central, 2016) Grossmann, Patrick; Gutman, David A.; Dunn, William D.; Holder, Chad A.; Aerts, Hugo
    Background: Glioblastoma (GBM) tumors exhibit strong phenotypic differences that can be quantified using magnetic resonance imaging (MRI), but the underlying biological drivers of these imaging phenotypes remain largely unknown. An Imaging-Genomics analysis was performed to reveal the mechanistic associations between MRI derived quantitative volumetric tumor phenotype features and molecular pathways. Methods: One hundred fourty one patients with presurgery MRI and survival data were included in our analysis. Volumetric features were defined, including the necrotic core (NE), contrast-enhancement (CE), abnormal tumor volume assessed by post-contrast T1w (tumor bulk or TB), tumor-associated edema based on T2-FLAIR (ED), and total tumor volume (TV), as well as ratios of these tumor components. Based on gene expression where available (n = 91), pathway associations were assessed using a preranked gene set enrichment analysis. These results were put into context of molecular subtypes in GBM and prognostication. Results: Volumetric features were significantly associated with diverse sets of biological processes (FDR < 0.05). While NE and TB were enriched for immune response pathways and apoptosis, CE was associated with signal transduction and protein folding processes. ED was mainly enriched for homeostasis and cell cycling pathways. ED was also the strongest predictor of molecular GBM subtypes (AUC = 0.61). CE was the strongest predictor of overall survival (C-index = 0.6; Noether test, p = 4x10−4). Conclusion: GBM volumetric features extracted from MRI are significantly enriched for information about the biological state of a tumor that impacts patient outcomes. Clinical decision-support systems could exploit this information to develop personalized treatment strategies on the basis of noninvasive imaging. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2659-5) contains supplementary material, which is available to authorized users.
  • Thumbnail Image
    Publication
    Recurrent hormone-binding domain truncated ESR1 amplifications in primary endometrial cancers suggest their implication in hormone independent growth
    (Nature Publishing Group, 2016) Holst, Frederik; Hoivik, Erling A.; Gibson, William; Taylor-Weiner, Amaro; Schumacher, Steven E.; Asmann, Yan W.; Grossmann, Patrick; Trovik, Jone; Necela, Brian M.; Thompson, E. Aubrey; Meyerson, Matthew; Beroukhim, Rameen; Salvesen, Helga B.; Cherniack, Andrew D.
    The estrogen receptor alpha (ERα) is highly expressed in both endometrial and breast cancers, and represents the most prevalent therapeutic target in breast cancer. However, anti-estrogen therapy has not been shown to be effective in endometrial cancer. Recently it has been shown that hormone-binding domain alterations of ERα in breast cancer contribute to acquired resistance to anti-estrogen therapy. In analyses of genomic data from The Cancer Genome Atlas (TCGA), we observe that endometrial carcinomas manifest recurrent ESR1 gene amplifications that truncate the hormone-binding domain encoding region of ESR1 and are associated with reduced mRNA expression of exons encoding the hormone-binding domain. These findings support a role for hormone-binding alterations of ERα in primary endometrial cancer, with potentially important therapeutic implications.
  • Thumbnail Image
    Publication
    Somatic mutations associated with MRI-derived volumetric features in glioblastoma
    (Springer Berlin Heidelberg, 2015) Gutman, David A.; Dunn, William D.; Grossmann, Patrick; Cooper, Lee A. D.; Holder, Chad A.; Ligon, Keith; Alexander, Brian; Aerts, Hugo
    Introduction: MR imaging can noninvasively visualize tumor phenotype characteristics at the macroscopic level. Here, we investigated whether somatic mutations are associated with and can be predicted by MRI-derived tumor imaging features of glioblastoma (GBM). Methods: Seventy-six GBM patients were identified from The Cancer Imaging Archive for whom preoperative T1-contrast (T1C) and T2-FLAIR MR images were available. For each tumor, a set of volumetric imaging features and their ratios were measured, including necrosis, contrast enhancing, and edema volumes. Imaging genomics analysis assessed the association of these features with mutation status of nine genes frequently altered in adult GBM. Finally, area under the curve (AUC) analysis was conducted to evaluate the predictive performance of imaging features for mutational status. Results: Our results demonstrate that MR imaging features are strongly associated with mutation status. For example, TP53-mutated tumors had significantly smaller contrast enhancing and necrosis volumes (p = 0.012 and 0.017, respectively) and RB1-mutated tumors had significantly smaller edema volumes (p = 0.015) compared to wild-type tumors. MRI volumetric features were also found to significantly predict mutational status. For example, AUC analysis results indicated that TP53, RB1, NF1, EGFR, and PDGFRA mutations could each be significantly predicted by at least one imaging feature. Conclusion: MRI-derived volumetric features are significantly associated with and predictive of several cancer-relevant, drug-targetable DNA mutations in glioblastoma. These results may shed insight into unique growth characteristics of individual tumors at the macroscopic level resulting from molecular events as well as increase the use of noninvasive imaging in personalized medicine. Electronic supplementary material The online version of this article (doi:10.1007/s00234-015-1576-7) contains supplementary material, which is available to authorized users.
  • Thumbnail Image
    Publication
    Characterization of Conserved Toxicogenomic Responses in Chemically Exposed Hepatocytes across Species and Platforms
    (National Institute of Environmental Health Sciences, 2015) El-Hachem, Nehme; Grossmann, Patrick; Blanchet-Cohen, Alexis; Bateman, Alain R.; Bouchard, Nicolas; Archambault, Jacques; Aerts, Hugo; Haibe-Kains, Benjamin
    Background: Genome-wide expression profiling is increasingly being used to identify transcriptional changes induced by drugs and environmental stressors. In this context, the Toxicogenomics Project–Genomics Assisted Toxicity Evaluation system (TG-GATEs) project generated transcriptional profiles from rat liver samples and human/rat cultured primary hepatocytes exposed to more than 100 different chemicals. Objectives: To assess the capacity of the cell culture models to recapitulate pathways induced by chemicals in vivo, we leveraged the TG-GATEs data set to compare the early transcriptional responses observed in the liver of rats treated with a large set of chemicals with those of cultured rat and human primary hepatocytes challenged with the same compounds in vitro. Methods: We developed a new pathway-based computational pipeline that efficiently combines gene set enrichment analysis (GSEA) using pathways from the Reactome database with biclustering to identify common modules of pathways that are modulated by several chemicals in vivo and in vitro across species. Results: We found that some chemicals induced conserved patterns of early transcriptional responses in in vitro and in vivo settings, and across human and rat genomes. These responses involved pathways of cell survival, inflammation, xenobiotic metabolism, oxidative stress, and apoptosis. Moreover, our results support the transforming growth factor beta receptor (TGF-βR) signaling pathway as a candidate biomarker associated with exposure to environmental toxicants in primary human hepatocytes. Conclusions: Our integrative analysis of toxicogenomics data provides a comprehensive overview of biochemical perturbations affected by a large panel of chemicals. Furthermore, we show that the early toxicological response occurring in animals is recapitulated in human and rat primary hepatocyte cultures at the molecular level, indicating that these models reproduce key pathways in response to chemical stress. These findings expand our understanding and interpretation of toxicogenomics data from human hepatocytes exposed to environmental toxicants. Citation El-Hachem N, Grossmann P, Blanchet-Cohen A, Bateman AR, Bouchard N, Archambault J, Aerts HJ, Haibe-Kains B. 2016. Characterization of conserved toxicogenomic responses in chemically exposed hepatocytes across species and platforms. Environ Health Perspect 124:313–320; http://dx.doi.org/10.1289/ehp.1409157
  • Thumbnail Image
    Publication
    Exploratory Study to Identify Radiomics Classifiers for Lung Cancer Histology
    (Frontiers Media S.A., 2016) Wu, Weimiao; Parmar, Chintan; Grossmann, Patrick; Quackenbush, John; Lambin, Philippe; Bussink, Johan; Mak, Raymond; Aerts, Hugo
    Background: Radiomics can quantify tumor phenotypic characteristics non-invasively by applying feature algorithms to medical imaging data. In this study of lung cancer patients, we investigated the association between radiomic features and the tumor histologic subtypes (adenocarcinoma and squamous cell carcinoma). Furthermore, in order to predict histologic subtypes, we employed machine-learning methods and independently evaluated their prediction performance. Methods: Two independent radiomic cohorts with a combined size of 350 patients were included in our analysis. A total of 440 radiomic features were extracted from the segmented tumor volumes of pretreatment CT images. These radiomic features quantify tumor phenotypic characteristics on medical images using tumor shape and size, intensity statistics, and texture. Univariate analysis was performed to assess each feature’s association with the histological subtypes. In our multivariate analysis, we investigated 24 feature selection methods and 3 classification methods for histology prediction. Multivariate models were trained on the training cohort and their performance was evaluated on the independent validation cohort using the area under ROC curve (AUC). Histology was determined from surgical specimen. Results: In our univariate analysis, we observed that fifty-three radiomic features were significantly associated with tumor histology. In multivariate analysis, feature selection methods ReliefF and its variants showed higher prediction accuracy as compared to other methods. We found that Naive Baye’s classifier outperforms other classifiers and achieved the highest AUC (0.72; p-value = 2.3 × 10−7) with five features: Stats_min, Wavelet_HLL_rlgl_lowGrayLevelRunEmphasis, Wavelet_HHL_stats_median, Wavelet_HLL_stats_skewness, and Wavelet_HLH_glcm_clusShade. Conclusion: Histological subtypes can influence the choice of a treatment/therapy for lung cancer patients. We observed that radiomic features show significant association with the lung tumor histology. Moreover, radiomics-based multivariate classifiers were independently validated for the prediction of histological subtypes. Despite achieving lower than optimal prediction accuracy (AUC 0.72), our analysis highlights the impressive potential of non-invasive and cost-effective radiomics for precision medicine. Further research in this direction could lead us to optimal performance and therefore to clinical applicability, which could enhance the efficiency and efficacy of cancer care.
  • Thumbnail Image
    Publication
    Defining a Radiomic Response Phenotype: A Pilot Study using targeted therapy in NSCLC
    (Nature Publishing Group, 2016) Aerts, Hugo; Grossmann, Patrick; Tan, Yongqiang; Oxnard, Geoffrey G.; Rizvi, Naiyer; Schwartz, Lawrence H.; Zhao, Binsheng
    Medical imaging plays a fundamental role in oncology and drug development, by providing a non-invasive method to visualize tumor phenotype. Radiomics can quantify this phenotype comprehensively by applying image-characterization algorithms, and may provide important information beyond tumor size or burden. In this study, we investigated if radiomics can identify a gefitinib response-phenotype, studying high-resolution computed-tomography (CT) imaging of forty-seven patients with early-stage non-small cell lung cancer before and after three weeks of therapy. On the baseline-scan, radiomic-feature Laws-Energy was significantly predictive for EGFR-mutation status (AUC = 0.67, p = 0.03), while volume (AUC = 0.59, p = 0.27) and diameter (AUC = 0.56, p = 0.46) were not. Although no features were predictive on the post-treatment scan (p > 0.08), the change in features between the two scans was strongly predictive (significant feature AUC-range = 0.74–0.91). A technical validation revealed that the associated features were also highly stable for test-retest (mean ± std: ICC = 0.96 ± 0.06). This pilot study shows that radiomic data before treatment is able to predict mutation status and associated gefitinib response non-invasively, demonstrating the potential of radiomics-based phenotyping to improve the stratification and response assessment between tyrosine kinase inhibitors (TKIs) sensitive and resistant patient populations.