Person:
Pantazopoulos, Charalampos

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Pantazopoulos

First Name

Charalampos

Name

Pantazopoulos, Charalampos

Search Results

Now showing 1 - 8 of 8
  • Thumbnail Image
    Publication
    Losing the sugar coating: Potential impact of perineuronal net abnormalities on interneurons in schizophrenia
    (Elsevier BV, 2015-09) Berretta, Sabina; Pantazopoulos, Charalampos; Markota, Matej; Brown, Christopher; Batzianouli, Eleni T.
    Perineuronal nets (PNNs) were shown to be markedly altered in subjects with schizophrenia. In particular, decreases of PNNs have been detected in the amygdala, entorhinal cortex and prefrontal cortex. The formation of these specialized extracellular matrix (ECM) aggregates during postnatal development, their functions, and association with distinct populations of GABAergic interneurons, bear great relevance to the pathophysiology of schizophrenia. PNNs gradually mature in an experience-dependent manner during late stages of postnatal development, overlapping with the prodromal period/age of onset of schizophrenia. Throughout adulthood, PNNs regulate neuronal properties, including synaptic remodeling, cell membrane compartmentalization and subsequent regulation of glutamate receptors and calcium channels, and susceptibility to oxidative stress. With the present paper, we discuss evidence for PNN abnormalities in schizophrenia, the potential functional impact of such abnormalities on inhibitory circuits and, in turn, cognitive and emotion processing. We integrate these considerations with results from recent genetic studies showing genetic susceptibility for schizophrenia associated with genes encoding for PNN components, matrix-regulating molecules and immune system factors. Notably, the composition of PNNs is regulated dynamically in response to factors such as fear, reward, stress, and immune response. This regulation occurs through families of matrix metalloproteinases that cleave ECM components, altering their functions and affecting plasticity. Several metalloproteinases have been proposed as vulnerability factors for schizophrenia. We speculate that the physiological process of PNN remodeling may be disrupted in schizophrenia as a result of interactions between matrix remodeling processes and immune system dysregulation. In turn, these mechanisms may contribute to the dysfunction of GABAergic neurons
  • Thumbnail Image
    Publication
    10.3 GLIA-EXTRACELLULAR MATRIX INTERACTIONS IN THE PATHOPHYSIOLOGY OF SCHIZOPHRENIA AND BIPOLAR DISORDER
    (Oxford University Press, 2018) Berretta, Sabina; Chelini, Gabriele; Pantazopoulos, Charalampos
    Abstract Background: Growing evidence from our group and others indicates that key neural functions, including regulation of synaptic plasticity and axonal guidance and connectivity, arise from interactions between glial cells, neurons, and the extracellular matrix. Several distinct populations of glial cells critically contribute to the composition of main components of the extracellular matrix (ECM), synthesizing them and secreting them into the extracellular space, where they become incorporated in organized ECM structures. The brain ECM, and chondroitin sulfate proteoglycans (CSPGs) in particular, play a key role in brain development and adult life, in turn regulating glial functions as well as synaptic plasticity and neural connectivity. We have previously shown that glial cells expressing CSPGs are altered in the amygdala and entorhinal cortex of people with schizophrenia (SZ) and bipolar disorder (BD). These changes are accompanied by marked decreases of perineuronal nets (PNNs), organized ECM structures unsheathing distinct neuronal populations. Recent and ongoing studies are focused on novel CSPG-enriched ECM structures, related to synaptic complexes and myelinated axons, their relationship to glial populations and their involvement in the pathophysiology of SZ and BD. Methods: Postmortem tissue samples from the amygdala, entorhinal cortex and thalamus from a well characterized cohort of healthy control, SZ and BD subjects were included in these studies. Multiplex immunofluorescence combined with quantitative microscopy was used to quantify glial cells and CSPGs, while electron microscopy on human and mouse tissue were used to investigate ultrastructural morphology. Step-wise ANOVA analyses included several potential confounds such as exposure to pharmacological agents and substance abuse. Results: Our results show that at least two novel ECM structures are present in the human brain. The first, enriched in CSPGs bearing chondroitin sulfation in position 6 (CS-6), and named here ‘CS-6 clusters’ was found to be markedly decreased in the amygdala of people with SZ and BD. Electron microscopy studies show that CS-6 clusters are composed of astrocytes synthesizing and secreting CS-6 CSPGs in the vicinity of adjacent groups of dendrites, where it is incorporated into postsynaptic densities of dendritic spines. The second CSPG-enriched ECM structure, i.e. axonal coats, has been observed in the human thalamus to envelope distinct populations of axons, interweaving with myelin sheets. Its main CSPG components appear to be synthesized and secreted by oligodendrocytes precursor cells located in the vicinity of axon bundles. Preliminary results show abnormalities affecting both oligodendrocyte precursors and axonal coats in SZ. Discussion In summary, our results show complex interactions between glial cells, neurons and ECM, potentially affecting synaptic functions and axonal conductance. Results in SZ and BD point to a profound disruption of these interactions in several brain regions.
  • Thumbnail Image
    Publication
    Circadian Rhythms in Regulation of Brain Processes and Role in Psychiatric Disorders
    (Hindawi, 2018) Pantazopoulos, Charalampos; Gamble, Karen; Stork, Oliver; Amir, Shimon
  • Thumbnail Image
    Publication
    The tetrapartite synapse: a key concept in the pathophysiology of schizophrenia
    (2018) Chelini, Gabriele; Pantazopoulos, Charalampos; Durning, Peter; Berretta, Sabina
    Growing evidence points to synaptic pathology as a core component of the pathophysiology of schizophrenia (SZ). Significant reductions of dendritic spine density and altered expression of their structural and molecular components have been reported in several brain regions, suggesting a deficit of synaptic plasticity. Regulation of synaptic plasticity is a complex process, one that requires not only interactions between pre- and post-synaptic terminals, but also glial cells and the extracellular matrix (ECM). Together, these elements are referred to as the ‘tetrapartite synapse’, an emerging concept supported by accumulating evidence for a role of glial cells and the extracellular matrix in regulating structural and functional aspects of synaptic plasticity. In particular, chondroitin sulfate proteoglycans (CSPGs), one of the main components of the ECM, have been shown to be synthesized predominantly by glial cells, to form organized perisynaptic aggregates known as perineuronal nets (PNNs), and to modulate synaptic signaling and plasticity during postnatal development and adulthood. Notably, recent findings from our group and others have shown marked CSPG abnormalities in several brain regions of people with SZ. These abnormalities were found to affect specialized ECM structures, including PNNs, as well as glial cells expressing the corresponding CSPGs. The purpose of this review is to bring forth the hypothesis that synaptic pathology in SZ arises from a disruption of the interactions between elements of the tetrapartite synapse.
  • Thumbnail Image
    Publication
    The Thalamic Reticular Nucleus in Schizophrenia and Bipolar Disorder: Role of Parvalbumin-Expressing Neuron Networks and Oxidative Stress
    (2017) Steullet, Pascal; Cabungcal, Jan-Harry; Bukhari, Syed A.; Ardelt, Magdalena I.; Pantazopoulos, Charalampos; Hamati, Fadi; Salt, Thomas E.; Cuenod, Michel; Do, Kim Q.; Berretta, Sabina
    Growing evidence points to a disruption of cortico-thalamo-cortical circuits in schizophrenia (SZ) and bipolar disorder (BD). Clues for a specific involvement of the thalamic reticular nucleus (TRN) come from its unique neuronal characteristics and neural connectivity, allowing it to shape thalamo-cortical information flow. A direct involvement of the TRN in SZ and BD has not been tested thus far. We used a combination of human postmortem and rodent studies to test the hypothesis that neurons expressing parvalbumin (PV neurons), a main TRN neuronal population, and associated Wisteria floribunda agglutinin-labeled perineuronal nets (WFA/PNNs) are altered in SZ and BD, and that these changes may occur early in the course of the disease as a consequence of oxidative stress. In both disease groups, marked decreases of PV neurons (immunoreactive for PV) and WFA/PNNs were observed in the TRN, with no effects of duration of illness or age at onset. Similarly, in transgenic mice with redox dysregulation, numbers of PV neurons and WFA/PNN+PV neurons were decreased in transgenic compared with wild type mice; these changes were present at postnatal day (P) 20 for PV neurons and P40 for WFA/PNN+PV neurons, accompanied by alterations of their firing properties. These results show profound abnormalities of PV neurons in the TRN of subjects with SZ and BD, and offer support for the hypothesis that oxidative stress may play a key role in impacting TRN PV neurons at early stages of these disorders. We put forth that these TRN abnormalities may contribute to disruptions of sleep spindles, focused attention and emotion processing in these disorders.
  • Thumbnail Image
    Publication
    F42. CHONDROTIN-6 SULFATE CLUSTERS: ASSOCIATION OF SYNAPTIC DOMAINS AND REGULATION OF SYNAPTIC PLASTICITY DURING FEAR LEARNING
    (Oxford University Press, 2018) Chelini, Gabriele; Berciu, Cristina; Pilobello, Kanoelani; Peter, Durning; Rachel, Jenkins; Kahn, Moazzzam; Ramikie, Teniel; Subramanian, Siva; Ressler, Kerry; Pantazopoulos, Charalampos; Berretta, Sabina
    Abstract Background: Emerging evidence from our group and others has brought the brain extracellular matrix (ECM) to the forefront of investigations on brain disorders. Our group has shown that organized perisynaptic ECM aggregates, i.e. perineuronal nets (PNNs) are decreased in several brain regions in people with schizophrenia (SZ) and bipolar disorder (BD). PNNs were detected by their expression of specific chondroitin sulfate proteoglycans (CSPGs), main components of the ECM, thought to play a key role in synaptic regulation during development and adulthood. Our studies have also shown that glial cells expressing CSPGs are altered in these disorders, suggesting a link between glial cell and PNN abnormalities. Finally, we have recently shown that novel CSPG structures, bearing a distinct CS-6 sulfation pattern and named CS-6 glial clusters, are decreased in the amygdala of people with SZ and BD. The morphology and function of CS-6 glial clusters is not currently known, but evidence from rodents and on the role of CSPGs in regulating synaptic functions strongly suggest that they may affect synaptic plasticity. We tested this hypothesis using a combination of human postmortem and rodent brain studies. Methods: High Resolution electron microscopy was used to investigate the ultrastructural organization of CS-6 glia clusters. A transgenic mouse model expressing green fluorescent protein in a subset of excitatory pyramidal neurons was used to investigate dendritic spines association with CS-6 glia clusters. Mice were exposed to a single session of auditory fear conditioning for a total of 15 minutes. Animals were euthanized 4 hours after behavioral test. Multiplex immunocytochemistry was used to visualize CS-6 clusters. Results: In human tissue, we show that CS-6 glia clusters are widespread in several brain regions, including the amygdala, entorhinal cortex, thalamus and hippocampus. Ultrastructural results show that CS-6 glia clusters are formed by CS-6 accumulations surrounding several dendrites. CS-6 expression was dected in astrocytes surrounding the dendrites, particularly in astrocytic endfeet enveloping dendritic spines, and within spines postsynaptic densities. Following auditory fear conditioning, marked changes of CS-6 glia clusters were observed in hippocampus regions dentate gyrus (g>1.5) and CA2 (g>1.5) and basolateral amygdala (g>1). Discussion These findings suggest that CS-6 glia clusters may represent segregated microdomains, dynamically regulated during learning and contributing to the modulation of synaptic regulation machinery. Specifically, we postulate that astrocytes synthesize CS-6 CSPG and secrete it through their endfeet around dendrites, modulating structural plasticity of dendritic spines. These results suggest a relationship between the abnormalities in CSPGs expression and alteration in dendritic spines, two pathological landmarks observed in postmortem brains of people with SZ and BD.
  • Thumbnail Image
    Publication
    In Sickness and in Health: Perineuronal Nets and Synaptic Plasticity in Psychiatric Disorders
    (Hindawi Publishing Corporation, 2016) Pantazopoulos, Charalampos; Berretta, Sabina
    Rapidly emerging evidence implicates perineuronal nets (PNNs) and extracellular matrix (ECM) molecules that compose or interact with PNNs, in the pathophysiology of several psychiatric disorders. Studies on schizophrenia, autism spectrum disorders, mood disorders, Alzheimer's disease, and epilepsy point to the involvement of ECM molecules such as chondroitin sulfate proteoglycans, Reelin, and matrix metalloproteases, as well as their cell surface receptors. In many of these disorders, PNN abnormalities have also been reported. In the context of the “quadripartite” synapse concept, that is, the functional unit composed of the pre- and postsynaptic terminals, glial processes, and ECM, and of the role that PNNs and ECM molecules play in regulating synaptic functions and plasticity, these findings resonate with one of the most well-replicated aspects of the pathology of psychiatric disorders, that is, synaptic abnormalities. Here we review the evidence for PNN/ECM-related pathology in these disorders, with particular emphasis on schizophrenia, and discuss the hypothesis that such pathology may significantly contribute to synaptic dysfunction.
  • Thumbnail Image
    Publication
    Proteoglycan abnormalities in olfactory epithelium tissue from subjects diagnosed with schizophrenia
    (Elsevier BV, 2013) Pantazopoulos, Charalampos; Boyer-Boiteau, Anne; Holbrook, Eric; Jang, Woochan; Hahn, Chang-Gyu; Arnold, Steven E.; Berretta, Sabina
    Emerging evidence points to proteoglycans abnormalities in the pathophysiology of schizophrenia (SZ). In particular, markedly abnormal expression of chondroitin sulfate proteoglycans (CSPGs), key components of the extracellular matrix, was observed in the medial temporal lobe. CSPG functions, including regulation of neuronal differentiation and migration, are highly relevant to the pathophysiology of SZ. CSPGs may exert similar functions in the olfactory epithelium (OE), a continuously regenerating neural tissue that shows cell and molecular abnormalities in SZ. We tested the hypothesis that CSPG expression in OE may be altered in SZ. CSPG-positive cells in postmortem OE from nonpsychiatric control (n=9) and SZ (n=10) subjects were counted using computer-assisted light microscopy. ‘Cytoplasmic’ CSPG (c-CSPG) labeling was detected in sustentacular cells and some olfactory receptor neurons (c-CSPG+ORNs), while ‘pericellular’ CSPG (p-CSPG) labeling was found in basal cells and some ORNs (p-CSPG+ORNs). Dual labeling for CSPG and markers for mature and immature ORNs suggests that c-CSPG+ORNs correspond to mature ORNs, and p-CSPG+ORNs to immature ORNs. Previous studies in the same cohort demonstrated that densities of mature ORNs were unaltered (Arnold et al, 2001). In the present study, numerical densities of c-CSPG+ORNs were significantly decreased in SZ (p <0.025; 99.32% decrease), suggesting a reduction of CSPG expression in mature ORNs. Previous studies showed a striking increase in the ratios of immature neurons with respect to basal cells. In this study, we find that the ratio of p-CSPG+ORNs/ CSPG+ basal cells was significantly increased (p=0.03) in SZ, while numerical density changes of p-CSPG+ORNs (110.71% increase) or CSPG+ basal cells (53.71% decrease), did not reach statistical significance. Together, these results indicate that CSPG abnormalities are present in the OE of SZ and specifically point to a reduction of CSPGs expression in mature ORNs in SZ. Given the role CSPG play in OE cell differentiation and axon guidance, we suggest that altered CSPG expression may contribute to ORN lineage dysregulation, and olfactory identification abnormalities, observed in SZ.