Person: Chang, Hao-Ming
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Chang
First Name
Hao-Ming
Name
Chang, Hao-Ming
2 results
Search Results
Now showing 1 - 2 of 2
Publication A role for the Perlman syndrome exonuclease Dis3l2 in the Lin28-let-7 pathway(2013) Chang, Hao-Ming; Triboulet, Robinson; Thornton, James E.; Gregory, RichardThe pluripotency factor Lin28 blocks the expression of let-7 microRNAs (miRNAs) in undifferentiated cells during development and functions as an oncogene in a subset of cancers1. Lin28 binds to let-7 precursor RNAs and recruits 3′ terminal uridylyl transferases (TUTases) to selectively inhibit let-7 biogenesis2–4. Uridylated pre-let-7 is refractory to processing by Dicer and is rapidly degraded by an unknown ribonuclease5. Here we identify Dis3l2 as the 3′-5′ exonuclease responsible for the decay of uridylated pre-let-7. Biochemical reconstitution assays reveal that 3′ oligouridylation stimulates Dis3l2 activity in vitro, and knockdown of Dis3l2 in mouse embryonic stem cells leads to the stabilization of pre-let-7. Our study establishes 3′ oligouridylation as an RNA decay signal for Dis3l2 and identifies the first physiological RNA substrate of this novel exonuclease that is mutated in the Perlman syndrome of fetal overgrowth and predisposition to Wilms’ tumor6.Publication Trim71 cooperates with microRNAs to repress Cdkn1a expression and promote embryonic stem cell proliferation(Nature Publishing Group, 2012) Chang, Hao-Ming; Martinez, Natalia J; Thornton, James Edward; Gregory, RichardPluripotent embryonic stem cells (ESCs) have a shortened cell cycle that enables their rapid proliferation. The ESC-specific miR-290 and miR-302 microRNA families promote proliferation whereas let-7 microRNAs inhibit self-renewal and promote cell differentiation. Lin28 suppresses let-7 expression in ESCs. Here, to gain further insight into mechanisms controlling ESC self-renewal we explore the molecular and cellular role of the let-7 target Trim71 (mLin41). We show that Trim71 associates with Argonaute2 (Ago2) and microRNAs and represses expression of Cdkn1a, a cyclin-dependent kinase inhibitor that negatively regulates the G1–S transition. We identify protein domains required for Trim71 association with Ago2, localization to P-bodies, and for repression of reporter mRNAs. Trim71 knockdown prolongs the G1 phase of the cell cycle and slows ESC proliferation, a phenotype that was rescued by depletion of Cdkn1a. Thus, we demonstrate Trim71 is a factor that facilitates the G1–S transition to promote rapid ESC self-renewal.