Person:
Bonner-Weir, Susan

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Bonner-Weir

First Name

Susan

Name

Bonner-Weir, Susan

Search Results

Now showing 1 - 10 of 16
  • Thumbnail Image
    Publication
    Heterogeneity of SOX9 and HNF1β in Pancreatic Ducts Is Dynamic
    (Elsevier, 2018) Rezanejad, Habib; Ouziel-Yahalom, Limor; Keyzer, Charlotte A.; Sullivan, Brooke A.; Hollister-Lock, Jennifer; Li, Wan-Chun; Guo, Lili; Deng, Shaopeng; Lei, Ji; Markmann, James; Bonner-Weir, Susan
    Summary Pancreatic duct epithelial cells have been suggested as a source of progenitors for pancreatic growth and regeneration. However, genetic lineage-tracing experiments with pancreatic duct-specific Cre expression have given conflicting results. Using immunofluorescence and flow cytometry, we show heterogeneous expression of both HNF1β and SOX9 in adult human and murine ductal epithelium. Their expression was dynamic and diminished significantly after induced replication. Purified pancreatic duct cells formed organoid structures in 3D culture, and heterogeneity of expression of Hnf1β and Sox9 was maintained even after passaging. Using antibodies against a second cell surface molecule CD51 (human) or CD24 (mouse), we could isolate living subpopulations of duct cells enriched for high or low expression of HNF1β and SOX9. Only the CD24high (Hnfβhigh/Sox9high) subpopulation was able to form organoids.
  • Thumbnail Image
    Publication
    Thyroid Hormone Promotes Postnatal Rat Pancreatic β-Cell Development and Glucose-Responsive Insulin Secretion Through MAFA
    (American Diabetes Association, 2013) Aguayo-Mazzucato, Cristina; Zavacki, Ann; Marinelarena, Alejandra; Hollister-Lock, Jennifer; El Khattabi, Ilham; Marsili, Alessandro; Weir, Gordon; Sharma, Arun J.; Larsen, P.; Bonner-Weir, Susan
    Neonatal β cells do not secrete glucose-responsive insulin and are considered immature. We previously showed the transcription factor MAFA is key for the functional maturation of β cells, but the physiological regulators of this process are unknown. Here we show that postnatal rat β cells express thyroid hormone (TH) receptor isoforms and deiodinases in an age-dependent pattern as glucose responsiveness develops. In vivo neonatal triiodothyronine supplementation and TH inhibition, respectively, accelerated and delayed metabolic development. In vitro exposure of immature islets to triiodothyronine enhanced the expression of Mafa, the secretion of glucose-responsive insulin, and the proportion of responsive cells, all of which are effects that were abolished in the presence of dominant-negative Mafa. Using chromatin immunoprecipitation and electrophoretic mobility shift assay, we show that TH has a direct receptor-ligand interaction with the Mafa promoter and, using a luciferase reporter, that this interaction was functional. Thus, TH can be considered a physiological regulator of functional maturation of β cells via its induction of Mafa.
  • Thumbnail Image
    Publication
    Sustained NF-κB Activation and Inhibition in β-Cells Have Minimal Effects on Function and Islet Transplant Outcomes
    (Public Library of Science, 2013) King, Aileen J. F.; Guo, Yongjing; Cai, Dongsheng; Hollister-Lock, Jennifer; Morris, Brooke; Salvatori, Alison; Corbett, John A.; Bonner-Weir, Susan; Weir, Gordon; Shoelson, Steven
    The activation of the transcription factor NF-κB leads to changes in expression of many genes in pancreatic β-cells. However, the role of NF-κB activation in islet transplantation has not been fully elucidated. The aim of the present study was to investigate whether the state of NF-κB activation would influence the outcome of islet transplantation. Transgenic mice expressing a dominant active IKKβ (constitutively active) or a non-degradable form of IκBα (constitutive inhibition) under control of the rat insulin promoter were generated. Islets from these mice were transplanted into streptozotocin diabetic mice in suboptimal numbers. Further, the effects of salicylate (an inhibitor of NF-κB) treatment of normal islets prior to transplantation, and the effects of salicylate administration to mice prior to and after islet implantation were evaluated. Transplantation outcomes were not affected using islets expressing a non-degradable form of IκBα when compared to wild type controls. However, the transplantation outcomes using islets isolated from mice expressing a constitutively active mutant of NF-κB were marginally worse, although no aberrations of islet function in vitro could be detected. Salicylate treatment of normal islets or mice had no effect on transplantation outcome. The current study draws attention to the complexities of NF-κB in pancreatic beta cells by suggesting that they can adapt with normal or near normal function to both chronic activation and inhibition of this important transcription factor.
  • Thumbnail Image
    Publication
    TNF-Like Weak Inducer of Apoptosis (TWEAK) Promotes Beta Cell Neogenesis from Pancreatic Ductal Epithelium in Adult Mice
    (Public Library of Science, 2013) Wu, Fei; Guo, Lili; Jakubowski, Aniela; Su, Lihe; Li, Wan-Chun; Bonner-Weir, Susan; Burkly, Linda C.
    Aim/Hypothesis The adult mammalian pancreas has limited ability to regenerate in order to restore adequate insulin production from multipotent progenitors, the identity and function of which remain poorly understood. Here we test whether the TNF family member TWEAK (TNF-like weak inducer of apoptosis) promotes β-cell neogenesis from proliferating pancreatic ductal epithelium in adult mice. Methods: C57Bl/6J mice were treated with Fc-TWEAK and pancreas harvested at different time points for analysis by histology and immunohistochemistry. For lineage tracing, 4 week old double transgenic mice CAII-CreERTM: R26R-eYFP were implanted with tamoxifen pellet, injected with Fc-TWEAK or control Ig twice weekly and analyzed at day 18 for TWEAK-induced duct cell progeny by costaining for insulin and YFP. The effect of TWEAK on pancreatic regeneration was determined by pancytokeratin immunostaining of paraffin embedded sections from wildtype and TWEAK receptor (Fn14) deficient mice after Px. Results: TWEAK stimulates proliferation of ductal epithelial cells through its receptor Fn14, while it has no mitogenic effect on pancreatic α- or β-cells or acinar cells. Importantly, TWEAK induces transient expression of endogenous Ngn3, a master regulator of endocrine cell development, and induces focal ductal structures with characteristics of regeneration foci. In addition, we identify by lineage tracing TWEAK-induced pancreatic β-cells derived from pancreatic duct epithelial cells. Conversely, we show that Fn14 deficiency delays formation of regenerating foci after Px and limits their expansion. Conclusions/Interpretation We conclude that TWEAK is a novel factor mediating pancreatic β-cell neogenesis from ductal epithelium in normal adult mice.
  • Thumbnail Image
    Publication
    Islet β cell mass in diabetes and how it relates to function, birth, and death
    (Blackwell Publishing Ltd, 2013) Weir, Gordon; Bonner-Weir, Susan
    In type 1 diabetes (T1D) β cell mass is markedly reduced by autoimmunity. Type 2 diabetes (T2D) results from inadequate β cell mass and function that can no longer compensate for insulin resistance. The reduction of β cell mass in T2D may result from increased cell death and/or inadequate birth through replication and neogenesis. Reduction in mass allows glucose levels to rise, which places β cells in an unfamiliar hyperglycemic environment, leading to marked changes in their phenotype and a dramatic loss of glucose-stimulated insulin secretion (GSIS), which worsens as glucose levels climb. Toxic effects of glucose on β cells (glucotoxicity) appear to be the culprit. This dysfunctional insulin secretion can be reversed when glucose levels are lowered by treatment, a finding with therapeutic significance. Restoration of β cell mass in both types of diabetes could be accomplished by either β cell regeneration or transplantation. Learning more about the relationships between β cell mass, turnover, and function and finding ways to restore β cell mass are among the most urgent priorities for diabetes research.
  • Thumbnail Image
    Publication
    Conversion of Mature Human β-Cells Into Glucagon-Producing α-Cells
    (American Diabetes Association, 2013) Spijker, H. Siebe; Ravelli, Raimond B.G.; Mommaas-Kienhuis, A. Mieke; van Apeldoorn, Aart A.; Engelse, Marten A.; Zaldumbide, Arnaud; Bonner-Weir, Susan; Rabelink, Ton J.; Hoeben, Rob C.; Clevers, Hans; Mummery, Christine L.; Carlotti, Françoise; de Koning, Eelco J.P.
    Conversion of one terminally differentiated cell type into another (or transdifferentiation) usually requires the forced expression of key transcription factors. We examined the plasticity of human insulin-producing β-cells in a model of islet cell aggregate formation. Here, we show that primary human β-cells can undergo a conversion into glucagon-producing α-cells without introduction of any genetic modification. The process occurs within days as revealed by lentivirus-mediated β-cell lineage tracing. Converted cells are indistinguishable from native α-cells based on ultrastructural morphology and maintain their α-cell phenotype after transplantation in vivo. Transition of β-cells into α-cells occurs after β-cell degranulation and is characterized by the presence of β-cell–specific transcription factors Pdx1 and Nkx6.1 in glucagon+ cells. Finally, we show that lentivirus-mediated knockdown of Arx, a determinant of the α-cell lineage, inhibits the conversion. Our findings reveal an unknown plasticity of human adult endocrine cells that can be modulated. This endocrine cell plasticity could have implications for islet development, (patho)physiology, and regeneration.
  • Thumbnail Image
    Publication
    β-cell dedifferentiation in diabetes is important, but what is it?
    (Landes Bioscience, 2013) Weir, Gordon; Aguayo-Mazzucato, Cristina; Bonner-Weir, Susan
    This commentary discusses the concept of β-cell dedifferentiation in diabetes, which is important but not well defined. A broad interpretation is that a state of differentiation has been lost, which means changes in gene expression as well as in structural and functional elements. Thus, a fully mature healthy β cell will have its unique differentiation characteristics, but maturing cells and old β cells will have different patterns of gene expression and might therefore be considered as dedifferentiated. The meaning of dedifferentiation is now being debated because β cells in the diabetic state lose components of their differentiated state, which results in severe dysfunction of insulin secretion. The major cause of this change is thought to be glucose toxicity (glucotoxicity) and that lowering glucose levels with treatment results in some restoration of function. An issue to be discussed is whether dedifferentiated β cells return to a multipotent precursor cell phenotype or whether they follow a different pathway of dedifferentiation.
  • Thumbnail Image
    Publication
    Dynamic development of the pancreas from birth to adulthood
    (Taylor & Francis, 2016) Bonner-Weir, Susan; Weir, Gordon; Aguayo-Mazzucato, Cristina
    After birth the endocrine pancreas continues its development, a complex process that involves both the maturation of islet cells and a marked expansion of their numbers. New beta cells are formed both by duplication of pre-existing cells and by new differentiation (neogenesis) across the first postnatal weeks, with the result of beta cells of different stages of maturation even after weaning. Improving our understanding of this period of beta cell expansion could provide valuable therapeutic insights.
  • Thumbnail Image
    Publication
    Compensatory Response by Late Embryonic Tubular Epithelium to the Reduction in Pancreatic Progenitors
    (Public Library of Science, 2015) Nishimura, Wataru; Kapoor, Archana; El Khattabi, Ilham; Jin, Wanzhu; Yasuda, Kazuki; Bonner-Weir, Susan; Sharma, Arun
    Early in pancreatic development, epithelial cells of pancreatic buds function as primary multipotent progenitor cells (1°MPC) that specify all three pancreatic cell lineages, i.e., endocrine, acinar and duct. Bipotent "Trunk" progenitors derived from 1°MPC are implicated in directly regulating the specification of endocrine progenitors. It is unclear if this specification process is initiated in the 1°MPC where some 1°MPC become competent for later specification of endocrine progenitors. Previously we reported that in Pdx1tTA/+;tetOMafA (bigenic) mice inducing expression of transcription factor MafA in Pdx1-expressing (Pdx1+) cells throughout embryonic development inhibited the proliferation and differentiation of 1°MPC cells, resulting in reduced pancreatic mass and endocrine cells by embryonic day (E) 17.5. Induction of the transgene only until E12.5 in Pdx1+ 1°MPC was sufficient for this inhibition of endocrine cells and pancreatic mass at E17.5. However, by birth (P0), as we now report, such bigenic pups had significantly increased pancreatic and endocrine volumes with endocrine clusters containing all pancreatic endocrine cell types. The increase in endocrine cells resulted from a higher proliferation of tubular epithelial cells expressing the progenitor marker Glut2 in E17.5 bigenic embryos and increased number of Neurog3-expressing cells at E19.5. A BrdU-labeling study demonstrated that inhibiting proliferation of 1°MPC by forced MafA-expression did not lead to retention of those progenitors in E17.5 tubular epithelium. Our data suggest that the forced MafA expression in the 1°MPC inhibits their competency to specify endocrine progenitors only until E17.5, and after that compensatory proliferation of tubular epithelium gives rise to a distinct pool of endocrine progenitors. Thus, these bigenic mice provide a novel way to characterize the competency of 1°MPC for their ability to specify endocrine progenitors, a critical limitation in our understanding of endocrine differentiation.