Person: Lee, Tae Ho
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Lee
First Name
Tae Ho
Name
Lee, Tae Ho
3 results
Search Results
Now showing 1 - 3 of 3
Publication Magnitude and Frequency of Cytotoxic T-Lymphocyte Responses: Identification of Immunodominant Regions of Human Immunodeficiency Virus Type 1 Subtype C(American Society for Microbiology, 2002) Novitsky, Vladimir; Cao, H.; Rybak, N.; Gilbert, P.; McLane, Mary; Gaolekwe, S.; Peter, T.; Thior, I.; Ndung, T.; Marlink, Richard; Lee, Tae Ho; Essex, MyronA systematic analysis of immune responses on a population level is critical for a human immunodeficiency virus type 1 (HIV-1) vaccine design. Our studies in Botswana on (i) molecular analysis of the HIV-1 subtype C (HIV-1C) epidemic, (ii) frequencies of major histocompatibility complex class I HLA types, and (iii) cytotoxic T-lymphocyte (CTL) responses in the course of natural infection allowed us to address HIV-1C-specific immune responses on a population level. We analyzed the magnitude and frequency of the gamma interferon ELISPOT-based CTL responses and translated them into normalized cumulative CTL responses. The introduction of population-based cumulative CTL responses reflected both (i) essentials of the predominant virus circulating locally in Botswana and (ii) specificities of the genetic background of the Botswana population, and it allowed the identification of immunodominant regions across the entire HIV-1C. The most robust and vigorous immune responses were found within the HIV-1C proteins Gag p24, Vpr, Tat, and Nef. In addition, moderately strong responses were scattered across Gag p24, Pol reverse transcriptase and integrase, Vif, Tat, Env gp120 and gp41, and Nef. Assuming that at least some of the immune responses are protective, these identified immunodominant regions could be utilized in designing an HIV vaccine candidate for the population of southern Africa. Targeting multiple immunodominant regions should improve the overall vaccine immunogenicity in the local population and minimize viral escape from immune recognition. Furthermore, the analysis of HIV-1C-specific immune responses on a population level represents a comprehensive systematic approach in HIV vaccine design and should be considered for other HIV-1 subtypes and/or different geographic areas.Publication Replicative Fitness Costs of Nonnucleoside Reverse Transcriptase Inhibitor Drug Resistance Mutations on HIV Subtype C(American Society for Microbiology, 2011) Armstrong, Katherine; Lee, Tae Ho; Essex, MyronSingle-dose nevirapine (NVP) is quite effective in preventing transmission of the human immunodeficiency virus (HIV) from mother to child; however, many women develop resistance to NVP in this setting. Comparing outcomes of clinical studies reveals an increased amount of resistance in subtype C relative to that in other subtypes. This study investigates how nonnucleoside reverse transcriptase inhibitor (NNRTI) drug resistance mutations of subtype C affect replication capacity. The 103N, 106A, 106M, 181C, 188C, 188L, and 190A drug resistance mutations were placed in a reverse transcriptase (RT) that matches the consensus subtype C sequence as well as the HXB2 RT, as a subtype B reference. The replicative fitness of each mutant was compared with that of the wild type in a head-to-head competition assay. The 106A mutant of subtype C would not grow in the competition assay, making it the weakest virus tested. The effect of the 106M mutation was weaker than those of the 181C and 188C mutations in the consensus C RT, but in subtype B, this difference was not seen. To see if the 106A mutation in a different subtype C background would have a different replicative profile, the same NNRTI resistance mutations were added to the MJ4 RT, a reference subtype C molecular clone. In the context of MJ4 RT, the 106A mutant was not the only mutant that showed poor replicative fitness; the 106M, 188C, and 190A mutants also failed to replicate. These results suggest that NNRTIs may be a cost-effective alternative for salvage therapy if deleterious mutations are present in a subtype C setting.Publication Association between Virus-Specific T-Cell Responses and Plasma Viral Load in Human Immunodeficiency Virus Type 1 Subtype C Infection(American Society for Microbiology, 2003) Novitsky, Vladimir; Gilbert, P.; Peter, T.; McLane, Mary; Gaolekwe, S.; Rybak, N.; Thior, Ibou; Ndung, T.; Marlink, Richard; Lee, Tae Ho; Essex, MyronVirus-specific T-cell immune responses are important in restraint of human immunodeficiency virus type 1 (HIV-1) replication and control of disease. Plasma viral load is a key determinant of disease progression and infectiousness in HIV infection. Although HIV-1 subtype C (HIV-1C) is the predominant virus in the AIDS epidemic worldwide, the relationship between HIV-1C-specific T-cell immune responses and plasma viral load has not been elucidated. In the present study we address (i) the association between the level of plasma viral load and virus-specific immune responses to different HIV-1C proteins and their subregions and (ii) the specifics of correlation between plasma viral load and T-cell responses within the major histocompatibility complex (MHC) class I HLA supertypes. Virus-specific immune responses in the natural course of HIV-1C infection were analyzed in the gamma interferon (IFN-γ)-enzyme-linked immunospot assay by using synthetic overlapping peptides corresponding to the HIV-1C consensus sequence. For Gag p24, a correlation was seen between better T-cell responses and lower plasma viral load. For Nef, an opposite trend was observed where a higher T-cell response was more likely to be associated with a higher viral load. At the level of the HLA supertypes, a lower viral load was associated with higher T-cell responses to Gag p24 within the HLA A2, A24, B27, and B58 supertypes, in contrast to the absence of such a correlation within the HLA B44 supertype. The present study demonstrated differential correlations (or trends to correlation) in various HIV-1C proteins, suggesting (i) an important role of the HIV-1C Gag p24-specific immune responses in control of viremia and (ii) more rapid viral escape from immune responses to Nef with no restraint of plasma viral load. Correlations between the level of IFN-γ-secreting T cells and viral load within the MHC class I HLA supertypes should be considered in HIV vaccine design and efficacy trials.