Person: Gilbertson, John R
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Gilbertson
First Name
John R
Name
Gilbertson, John R
5 results
Search Results
Now showing 1 - 5 of 5
Publication Integration of Architectural and Cytologic Driven Image Algorithms for Prostate Adenocarcinoma Identification(IOS Press, 2012) Hipp, Jason; Monaco, James; Kunju, L. Priya; Cheng, Jerome; Yagi, Yukako; Rodriguez-Canales, Jaime; Emmert-Buck, Michael R.; Hewitt, Stephen; Feldman, Michael D.; Tomaszewski, John E.; Toner, Mehmet; Tompkins, Ronald; Flotte, Thomas; Lucas, David; Gilbertson, John R; Madabhushi, Anant; Balis, UlyssesIntroduction:: The advent of digital slides offers new opportunities within the practice of pathology such as the use of image analysis techniques to facilitate computer aided diagnosis (CAD) solutions. Use of CAD holds promise to enable new levels of decision support and allow for additional layers of quality assurance and consistency in rendered diagnoses. However, the development and testing of prostate cancer CAD solutions requires a ground truth map of the cancer to enable the generation of receiver operator characteristic (ROC) curves. This requires a pathologist to annotate, or paint, each of the malignant glands in prostate cancer with an image editor software - a time consuming and exhaustive process. Recently, two CAD algorithms have been described: probabilistic pairwise Markov models (PPMM) and spatially-invariant vector quantization (SIVQ). Briefly, SIVQ operates as a highly sensitive and specific pattern matching algorithm, making it optimal for the identification of any epithelial morphology, whereas PPMM operates as a highly sensitive detector of malignant perturbations in glandular lumenal architecture. Methods:: By recapitulating algorithmically how a pathologist reviews prostate tissue sections, we created an algorithmic cascade of PPMM and SIVQ algorithms as previously described by Doyle el al. [1] where PPMM identifies the glands with abnormal lumenal architecture, and this area is then screened by SIVQ to identify the epithelium. Results:: The performance of this algorithm cascade was assessed qualitatively (with the use of heatmaps) and quantitatively (with the use of ROC curves) and demonstrates greater performance in the identification of malignant prostatic epithelium. Conclusion:: This ability to semi-autonomously paint nearly all the malignant epithelium of prostate cancer has immediate applications to future prostate cancer CAD development as a validated ground truth generator. In addition, such an approach has potential applications as a pre-screening/quality assurance tool.Publication Prediction of primary breast cancer size and T-stage using micro-computed tomography in lumpectomy specimens(Medknow, 2015) Sarraj, WafaM; Tang, Rong; Najjar, Anas L; Griffin, Molly; Bui, Anthony H; Zambeli-Ljepovic, Alan; Senter-Zapata, Mike; Lewin-Berlin, Maya; Fernandez, Leopoldo; Buckley, Juliette; Ly, Amy; Brachtel, Elena; Aftreth, Owen; Gilbertson, John R; Yagi, Yukako; Gadd, Michele; Hughes, Kevin; Smith, BarbaraL; Michaelson, JamesSBackground: Histopathology is the only accepted method to measure and stage the breast tumor size. However, there is a need to find another method to measure and stage the tumor size when the pathological assessment is not available. Micro-computed tomography. (micro-CT) has the ability to measure tumor in three dimensions in an intact lumpectomy specimen. In this study, we aimed to determine the accuracy of micro-CT to measure and stage the primary tumor size in breast lumpectomy specimens, as compared to the histopathology. Materials and Methods: Seventy-two women who underwent lumpectomy surgery at the Massachusetts General Hospital Department of Surgery from June 2011 to September 2011, and from August 2013 to December 2013 participated in this study. The lumpectomy specimens were scanned using micro-CT followed by routine pathological processing. The maximum dimension of the invasive breast tumor was obtained from the micro-CT image and was compared to the corresponding pathology report for each subject. Results: The invasive tumor size measurement by micro-CT was underestimated in 24 cases. (33%), overestimated in 37 cases. (51%), and matched it exactly in 11 cases. (15%) compared to the histopathology measurement for all the cases. However, micro-CT T-stage classification differed from histopathology in only 11. (15.2%) with 6 cases. (8.3%) classified as a higher stage by micro-CT, and 5 cases. (6.9%) classified as lower compared to histopathology. In addition, micro-CT demonstrated a statically significant strong agreement (κ =0.6, P < 0.05) with pathological tumor size and staging for invasive ductal carcinoma. (IDC) group. In contrast, there was no agreement. (κ = −2, P = 0.67) between micro-CT and pathology in estimating and staging tumor size for invasive lobular carcinoma. (ILC) group. This could be explained by a small sample size. (7) for ILC group. Conclusions: Micro-CT is a promising modality for measuring and staging the IDC.Publication Availability and Quality of Paraffin Blocks Identified in Pathology Archives: A Multi-Institutional Study by the Shared Pathology Informatics Network (SPIN)(BioMed Central, 2007) Patel, Ashokkumar A; Gupta, Dilipkumar; Seligson, David; Hattab, Eyas M; Balis, Ulysses J; Ulbright, Thomas M; Berman, Jules J; Dry, Sarah; Schirripa, Osvaldo; Becich, Michael J; Parwani, Anil V; Kohane, Isaac; Gilbertson, John R; Yu, HongBackground: Shared Pathology Informatics Network (SPIN) is a tissue resource initiative that utilizes clinical reports of the vast amount of paraffin-embedded tissues routinely stored by medical centers. SPIN has an informatics component (sending tissue-related queries to multiple institutions via the internet) and a service component (providing histopathologically annotated tissue specimens for medical research). This paper examines if tissue blocks, identified by localized computer searches at participating institutions, can be retrieved in adequate quantity and quality to support medical researchers. Methods: Four centers evaluated pathology reports (1990–2005) for common and rare tumors to determine the percentage of cases where suitable tissue blocks with tumor were available. Each site generated a list of 100 common tumor cases (25 cases each of breast adenocarcinoma, colonic adenocarcinoma, lung squamous carcinoma, and prostate adenocarcinoma) and 100 rare tumor cases (25 cases each of adrenal cortical carcinoma, gastro-intestinal stromal tumor [GIST], adenoid cystic carcinoma, and mycosis fungoides) using a combination of Tumor Registry, laboratory information system (LIS) and/or SPIN-related tools. Pathologists identified the slides/blocks with tumor and noted first 3 slides with largest tumor and availability of the corresponding block. Results: Common tumors cases (n = 400), the institutional retrieval rates (all blocks) were 83% (A), 95% (B), 80% (C), and 98% (D). Retrieval rate (tumor blocks) from all centers for common tumors was 73% with mean largest tumor size of 1.49 cm; retrieval (tumor blocks) was highest-lung (84%) and lowest-prostate (54%). Rare tumors cases (n = 400), each institution's retrieval rates (all blocks) were 78% (A), 73% (B), 67% (C), and 84% (D). Retrieval rate (tumor blocks) from all centers for rare tumors was 66% with mean largest tumor size of 1.56 cm; retrieval (tumor blocks) was highest for GIST (72%) and lowest for adenoid cystic carcinoma (58%).Conclusion: Assessment shows availability and quality of archival tissue blocks that are retrievable and associated electronic data that can be of value for researchers. This study serves to compliment the data from which uniform use of the SPIN query tools by all four centers will be measured to assure and highlight the usefulness of archival material for obtaining tumor tissues for research.Publication A Relationship Between Slide Quality and Image Quality in Whole Slide Imaging (WSI)(BioMed Central, 2008) Yagi, Yukako; Gilbertson, John RThis study examined the effect of tissue section thickness and consistency – parameters outside the direct control of the imaging devices themselves – on WSI capture speed and image quality. Preliminary data indicates that thinner, more consistent tissue sectioning (such as those produced by automated tissue sectioning robots) result in significantly faster WSI capture times and better image quality. A variety of tissue types (including human breast, mouse embryo, mouse brain, etc.) were sectioned using an (AS-200) Automated Tissue Sectioning System (Kurabo Industries, Osaka Japan) at thicknesses from 2 – 9 μm (at one μm intervals) and stained with H&E by a standard method. The resulting slides were imaged with 5 different WSI devices (ScanScope CS, Aperio, CA, iScan, BioImagene, CA, DX40, DMetrix, AZ, NanoZoomer, Hamamatsu Photonics K.K., Japan, Mirax Scan, Carl Zeiss Inc., Germany) with sampling periods of 0.43 – 0.69 μm/pixel. Slides with different tissue thicknesses were compared for image quality, appropriate number of focus points, and overall scanning speed. Thinner sections (ie 3 μm sections versus 7 μm) required significantly fewer focus points and had significantly lower (10–15%) capture times. Improvement was seen with all devices and tissues tested. Furthermore, a panel of experienced pathologist judged image quality to be significantly better (for example, with better apparent resolution of nucleoli) with the thinner sections. Automated tissue sectioning is a very new technology; however, the AS-200 seems to be able to produce thinner, more consistent, flatter sections than manual methods at reasonably high throughput. The resulting tissue sections seem to be easier for a WSI system's focusing systems to deal with (compared to manually cut slides). Teaming an automated tissue-sectioning device with a WSI device shows promise in producing faster WSI throughput with better image quality.Publication The Importance of Optical Optimization in Whole Slide Imaging (WSI) and Digital Pathology Imaging(BioMed Central, 2008) Yagi, Yukako; Gilbertson, John RIn the last 10 years, whole slide imaging (WSI) has seen impressive progress not only in image quality and scanning speed but also in the variety of systems available to pathologists. However, we have noticed that most systems have relatively simple optics axes and rely on software to optimize image quality and colour balance. While much can be done in software, this study examines the importance of optics, in particular optical filters, in WSI. Optical resolution is a function of the wavelength of light used and the numerical aperture of the lens system (Resolution = (f) wavelength/2 NA). When illumining light is not conditioned correctly with filters, there is a tendency for the wavelength to shift to longer values (more red) because of the characteristics of the lamps in common use. Most microscopes (but remarkably few WSI devices) correct for this with ND filter for brightness and Blue filter (depends on the light source) for colour correction. Using H&E slides research microscopes (Axiophot, Carl Zeiss MicroImaging, Inc. NY. Eclipse 50i., Nikon Inc. NY) at 20×, an attached digital camera (SPOT RT741 Slider Color, Diagnosis Instruments, MI USA), and a filter set, we examined the effect of filters and software enhancement on digital image quality. The focus value (as evaluated by focus evaluation software developed in house and SPOT imaging Software v4.6) was used as a proxy for image quality. Resolution of tissue features was best with the use of both the Blue and ND filters (in addition to software enhancement). Images without filters but with software enhancement while superficially good, lacked some details of specimen morphology and were unclear compared with the images with filters. The results indicate that the appropriate use of optical filters could measurably improve the appearance and resolution of WSI images.