Person:
Thomas, Robert

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Thomas

First Name

Robert

Name

Thomas, Robert

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Publication
    Obstructive Sleep Apnea Alters Sleep Stage Transition Dynamics
    (Public Library of Science (PLoS), 2010) Bianchi, Matt Travis; Cash, Sydney; Mietus, Joseph; Peng, Chung-Kang; Thomas, Robert
    Introduction: Enhanced characterization of sleep architecture, compared with routine polysomnographic metrics such as stage percentages and sleep efficiency, may improve the predictive phenotyping of fragmented sleep. One approach involves using stage transition analysis to characterize sleep continuity. Methods and Principal Findings: We analyzed hypnograms from Sleep Heart Health Study (SHHS) participants using the following stage designations: wake after sleep onset (WASO), non-rapid eye movement (NREM) sleep, and REM sleep. We show that individual patient hypnograms contain insufficient number of bouts to adequately describe the transition kinetics, necessitating pooling of data. We compared a control group of individuals free of medications, obstructive sleep apnea (OSA), medical co-morbidities, or sleepiness (n = 374) with mild (n = 496) or severe OSA (n = 338). WASO, REM sleep, and NREM sleep bout durations exhibited multi-exponential temporal dynamics. The presence of OSA accelerated the “decay” rate of NREM and REM sleep bouts, resulting in instability manifesting as shorter bouts and increased number of stage transitions. For WASO bouts, previously attributed to a power law process, a multi-exponential decay described the data well. Simulations demonstrated that a multi-exponential process can mimic a power law distribution. Conclusion and Significance: OSA alters sleep architecture dynamics by decreasing the temporal stability of NREM and REM sleep bouts. Multi-exponential fitting is superior to routine mono-exponential fitting, and may thus provide improved predictive metrics of sleep continuity. However, because a single night of sleep contains insufficient transitions to characterize these dynamics, extended monitoring of sleep, probably at home, would be necessary for individualized clinical application.
  • Thumbnail Image
    Publication
    Urinary Neutrophil Gelatinase-Associated Lipocalin (NGAL) in Patients with Obstructive Sleep Apnea
    (Public Library of Science, 2016) Maski, Manish; Thomas, Robert; Karumanchi, Subbian; Parikh, Samir
    Background: Obstructive sleep apnea (OSA) is a well-established risk factor for hypertension and cardiovascular morbidity and mortality. More recently, OSA has been implicated as an independent risk factor for chronic kidney disease. Urinary neutrophil gelatinase-associated lipocalin (NGAL) is a well-accepted early biomarker of subclinical kidney tubular injury, preceding an increase in serum creatinine. The goal of this study was to determine if an association exists between OSA and increased urinary NGAL levels. Methods: We prospectively enrolled adult patients from the sleep clinic of an academic medical center. Each underwent polysomnography and submitted a urine specimen upon enrollment. We measured NGAL and creatinine levels on all urine samples before participants received treatment with continuous positive airway pressure (CPAP), and, in a subset of OSA patients, after CPAP therapy. We compared the urinary NGAL/creatinine ratio between untreated participants with and without OSA, and within a subset of 11 OSA patients also after CPAP therapy. Results: A total of 49 subjects were enrolled: 16 controls based on an apnea-hypopnea index (events with at least 4% oxygen desaturation; AHI-4%) <5 events/hour (mean AHI-4% = 0.59 +/- 0.60); 33 OSA patients based on an AHI-4% >5 events/hour (mean AHI-4% = 43.3 +/- 28.1). OSA patients had a higher mean body-mass index than the control group (36.58 +/- 11.02 kg/m2 vs. 26.81 +/- 6.55 kg/m2, respectively; p = 0.0005) and were more likely to be treated for hypertension (54.5% vs. 6.25% of group members, respectively; p = 0.0014). The groups were otherwise similar in demographics, and there was no difference in the number of diabetic subjects or in the mean serum creatinine concentration (control = 0.86 +/- 0.15 mg/dl, OSA = 0.87 +/- 0.19 mg/dl; p = 0.7956). We found no difference between the urinary NGAL-to-creatinine ratios among untreated OSA patients versus control subjects (median NGAL/creatinine = 6.34 ng/mg vs. 6.41 ng/mg, respectively; p = 0.4148). Furthermore, CPAP therapy did not affect the urinary NGAL-to-creatinine ratio (p = 0.7758 for two-tailed, paired t-test). Conclusions: In this prospective case-control study comparing patients with severe, hypoxic OSA to control subjects, all with normal serum creatinine, we found no difference between urinary levels of NGAL. Furthermore, CPAP therapy did not change these levels pre- and post-treatment.