Person:
Chen, Xinhua

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Chen

First Name

Xinhua

Name

Chen, Xinhua

Search Results

Now showing 1 - 7 of 7
  • Thumbnail Image
    Publication
    Overview of Clostridium difficile infection: implications for China
    (Oxford University Press, 2013) Chen, Xinhua; Lamont, J. Thomas
    The incidence and severity of Clostridium difficile infection (CDI) have dramatically increased in the Western world in recent years. In contrast, CDI is rarely reported in China, possibly due to under-diagnosis. This article briefly summarizes CDI incidence, management and preventive strategies. The authors intend to raise awareness of this disease among Chinese physicians and health workers, in order to minimize the medical and economic burden of a potential epidemic in the future.
  • Thumbnail Image
    Publication
    The Monoclonal Antitoxin Antibodies (Actoxumab–Bezlotoxumab) Treatment Facilitates Normalization of the Gut Microbiota of Mice with Clostridium difficile Infection
    (Frontiers Media S.A., 2016) Džunková, Mária; D'Auria, Giuseppe; Xu, Hua; Huang, Jun; Duan, Yinghua; Moya, Andrés; Kelly, Ciaran; Chen, Xinhua
    Antibiotics have significant and long-lasting impacts on the intestinal microbiota and consequently reduce colonization resistance against Clostridium difficile infection (CDI). Standard therapy using antibiotics is associated with a high rate of disease recurrence, highlighting the need for novel treatment strategies that target toxins, the major virulence factors, rather than the organism itself. Human monoclonal antibodies MK-3415A (actoxumab–bezlotoxumab) to C. difficile toxin A and toxin B, as an emerging non-antibiotic approach, significantly reduced the recurrence of CDI in animal models and human clinical trials. Although the main mechanism of protection is through direct neutralization of the toxins, the impact of MK-3415A on gut microbiota and its restoration has not been examined. Using a CDI murine model, we compared the bacterial diversity of the gut microbiome of mice under different treatments including MK-3415A, vancomycin, or vancomycin combined with MK-3415A, sampled longitudinally. Here, we showed that C. difficile infection resulted in the prevalence of Enterobacter species. Sixty percent of mice in the vehicle group died after 2 days and their microbiome was almost exclusively formed by Enterobacter. MK-3415A treatment resulted in lower Enterobacter levels and restoration of Blautia, Akkermansia, and Lactobacillus which were the core components of the original microbiota. Vancomycin treatment led to significantly lower survival rate than the combo treatment of MK-3415A and vancomycin. Vancomycin treatment decreased bacterial diversity with predominant Enterobacter and Akkermansia, while Staphylococcus expanded after vancomycin treatment was terminated. In contrast, mice treated by vancomycin combined with MK-3415A also experienced decreased bacterial diversity during vancomycin treatment. However, these animals were able to recover their initial Blautia and Lactobacillus proportions, even though episodes of Staphylococcus overgrowth were detected by the end of the experiments. In conclusion, MK-3415A (actoxumab–bezlotoxumab) treatment facilitates normalization of the gut microbiota in CDI mice. It remains to be examined whether or not the prevention of recurrent CDI by the antitoxin antibodies observed in clinical trials occurs through modulation of microbiota.
  • Thumbnail Image
    Publication
    Active and Secretory IgA-Coated Bacterial Fractions Elucidate Dysbiosis in Clostridium difficile Infection
    (American Society for Microbiology, 2016) Džunková, Mária; Moya, Andrés; Vázquez-Castellanos, Jorge F.; Artacho, Alejandro; Chen, Xinhua; Kelly, Ciaran; D’Auria, Giuseppe
    ABSTRACT The onset of Clostridium difficile infection (CDI) has been associated with treatment with wide-spectrum antibiotics. Antibiotic treatment alters the activity of gut commensals and may result in modified patterns of immune responses to pathogens. To study these mechanisms during CDI, we separated bacteria with high cellular RNA content (the active bacteria) and their inactive counterparts by fluorescence-activated cell sorting (FACS) of the fecal bacterial suspension. The gut dysbiosis due to the antibiotic treatment may result in modification of immune recognition of intestinal bacteria. The immune recognition patterns were assessed by FACS of bacterial fractions either coated or not with intestinal secretory immunoglobulin A (SIgA). We described the taxonomic distributions of these four bacterial fractions (active versus inactive and SIgA coated versus non-SIgA coated) by massive 16S rRNA gene amplicon sequencing and quantified the proportion of C. difficile toxin genes in the samples. The overall gut microbiome composition was more robustly influenced by antibiotics than by the C. difficile toxins. Bayesian networks revealed that the C. difficile cluster was preferentially SIgA coated during CDI. In contrast, in the CDI-negative group Fusobacterium was the characteristic genus of the SIgA-opsonized fraction. Lactobacillales and Clostridium cluster IV were mostly inactive in CDI-positive patients. In conclusion, although the proportion of C. difficile in the gut is very low, it is able to initiate infection during the gut dysbiosis caused by environmental stress (antibiotic treatment) as a consequence of decreased activity of the protective bacteria. IMPORTANCE: C. difficile is a major enteric pathogen with worldwide distribution. Its expansion is associated with broad-spectrum antibiotics which disturb the normal gut microbiome. In this study, the DNA sequencing of highly active bacteria and bacteria opsonized by intestinal secretory immunoglobulin A (SIgA) separated from the whole bacterial community by FACS elucidated how the gut dysbiosis promotes C. difficile infection (CDI). Bacterial groups with inhibitory effects on C. difficile growth, such as Lactobacillales, were mostly inactive in the CDI patients. C. difficile was typical for the bacterial fraction opsonized by SIgA in patients with CDI, while Fusobacterium was characteristic for the SIgA-opsonized fraction of the controls. The study demonstrates that sequencing of specific bacterial fractions provides additional information about dysbiotic processes in the gut. The detected patterns have been confirmed with the whole patient cohort independently of the taxonomic differences detected in the nonfractionated microbiomes.
  • Thumbnail Image
    Publication
    Characterization of G protein coupling mediated by the conserved D1343.49 of DRY motif, M2416.34, and F2516.44 residues on human CXCR1
    (Elsevier, 2015) Han, Xinbing; Feng, Yan; Chen, Xinhua; Gerard, Craig John; Boisvert, William A.
    CXCR1, a receptor for interleukin-8 (IL-8), plays an important role in defending against pathogen invasion during neutrophil-mediated innate immune response. Human CXCR1 is a G protein-coupled receptor (GPCR) with its characteristic seven transmembrane domains (TMs). Functional and structural analyses of several GPCRs have revealed that conserved residues on TM3 (including the highly conserved Asp-Arg-Tyr (DRY) motif) and TM6 near intracellular loops contain domains critical for G protein coupling as well as GPCR activation. The objective of this study was to elucidate the role of critical amino acid residues on TM3 near intracellular loop 2 (i2) and TM6 near intracellular loop 3 (i3), including S1323.47 (Baldwin location), D1343.49, M2416.34, and F2516.44, in G protein coupling and CXCR1 activation. The results demonstrate that mutations of D1343.49 at DRY motif of CXCR1 (D134N and D134V) completely abolished the ligand binding and functional response of the receptor. Additionally, point mutations at positions 241 and 251 between TM6 and i3 loop generated mutant receptors with modest constitutive activity via Gα15 signaling activation. Our results show that D1343.49 on the highly conserved DRY motif has a distinct role for CXCR1 compared to its homologues (CXCR2 and KSHV-GPCR) in G protein coupling and receptor activation. In addition, M2416.34 and F2516.44 along with our previously identified V2476.40 on TM6 are spatially located in a “hot spot” likely essential for CXCR1 activation. Identification of these amino acid residues may be useful for elucidating mechanism of CXCR1 activation and designing specific antagonists for the treatment of CXCR1-mediated diseases.
  • Thumbnail Image
    Publication
    Probiotic Yeast Inhibits VEGFR Signaling and Angiogenesis in Intestinal Inflammation
    (Public Library of Science, 2013) Chen, Xinhua; Yang, Guoxun; Song, Joo-Hye; Xu, Huansheng; Li, Dan; Goldsmith, Jeffrey; Zeng, Huiyan; Parsons-Wingerter, Patricia A.; Reinecker, Hans-Christian; Kelly, Ciaran
    Background and Aims Saccharomyces boulardii (Sb) can protect against intestinal injury and tumor formation, but how this probiotic yeast controls protective mucosal host responses is unclear. Angiogenesis is an integral process of inflammatory responses in inflammatory bowel diseases (IBD) and required for mucosal remodeling during restitution. The aim of this study was to determine whether Sb alters VEGFR (vascular endothelial growth factor receptor) signaling, a central regulator of angiogenesis. Methods: HUVEC were used to examine the effects of Sb on signaling and on capillary tube formation (using the ECMatrix™ system). The effects of Sb on VEGF-mediated angiogenesis were examined in vivo using an adenovirus expressing VEGF-A(164) in the ears of adult nude mice (NuNu). The effects of Sb on blood vessel volume branching and density in DSS-induced colitis was quantified using VESsel GENeration (VESGEN) software. Results: 1) Sb treatment attenuated weight-loss (p<0.01) and histological damage (p<0.01) in DSS colitis. VESGEN analysis of angiogenesis showed significantly increased blood vessel density and volume in DSS-treated mice compared to control. Sb treatment significantly reduced the neo-vascularization associated with acute DSS colitis and accelerated mucosal recovery restoration of the lamina propria capillary network to a normal morphology. 2) Sb inhibited VEGF-induced angiogenesis in vivo in the mouse ear model. 3) Sb also significantly inhibited angiogenesis in vitro in the capillary tube assay in a dose-dependent manner (p<0.01). 4) In HUVEC, Sb reduced basal VEGFR-2 phosphorylation, VEGFR-2 phosphorylation in response to VEGF as well as activation of the downstream kinases PLCγ and Erk1/2. Conclusions: Our findings indicate that the probiotic yeast S boulardii can modulate angiogenesis to limit intestinal inflammation and promote mucosal tissue repair by regulating VEGFR signaling.
  • Thumbnail Image
    Publication
    Reduced Intestinal Tumorigenesis in APCmin Mice Lacking Melanin-Concentrating Hormone
    (Public Library of Science, 2012) Nagel, Jutta M.; Geiger, Brenda Mae; Karagiannis, Apostolos K. A.; Gras-Miralles, Beatriz; Horst, David; Najarian, Robert M.; Ziogas, Dimitrios C.; Chen, Xinhua; Kokkotou, Efi
    Background: Melanin-concentrating hormone (MCH) is an evolutionary conserved hypothalamic neuropeptide that in mammals primarily regulates appetite and energy balance. We have recently identified a novel role for MCH in intestinal inflammation by demonstrating attenuated experimental colitis in MCH deficient mice or wild type mice treated with an anti-MCH antibody. Therefore, targeting MCH has been proposed for the treatment of inflammatory bowel disease. Given the link between chronic intestinal inflammation and colorectal cancer, in the present study we sought to investigate whether blocking MCH might have effects on intestinal tumorigenesis that are independent of inflammation. Methodology Tumor development was evaluated in MCH-deficient mice crossed to the APCmin mice which develop spontaneously intestinal adenomas. A different cohort of MCH−/− and MCH+/+ mice in the APCmin background was treated with dextran sodium sulphate (DSS) to induce inflammation-dependent colorectal tumors. In Caco2 human colorectal adenocarcinoma cells, the role of MCH on cell survival, proliferation and apoptosis was investigated. Results: APCmin mice lacking MCH developed fewer, smaller and less dysplastic tumors in the intestine and colon which at the molecular level are characterized by attenuated activation of the wnt/beta-catenin signaling pathway and increased apoptotic indices. Form a mechanistic point of view, MCH increased the survival of colonic adenocarcinoma Caco2 cells via inhibiting apoptosis, consistent with the mouse studies. Conclusion: In addition to modulating inflammation, MCH was found to promote intestinal tumorigenesis at least in part by inhibiting epithelial cell apoptosis. Thereby, blocking MCH as a therapeutic approach is expected to decrease the risk for colorectal cancer.