Person:
Bischoff, Joyce

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Bischoff

First Name

Joyce

Name

Bischoff, Joyce

Search Results

Now showing 1 - 8 of 8
  • Thumbnail Image
    Publication
    Propranolol treatment of infantile hemangioma endothelial cells: A molecular analysis
    (D.A. Spandidos, 2012) STILES, JESSICA; AMAYA, CLARISSA; PHAM, ROBERT; ROWNTREE, REBECCA K.; LACAZE, MARY; MULNE, ARLYNN; Bischoff, Joyce; KOKTA, VICTOR; BOUCHERON, LAURA E.; MITCHELL, DIANNE C.; BRYAN, BRAD A.
    Infantile hemangiomas (IHs) are non-malignant, largely cutaneous vascular tumors affecting approximately 5–10% of children to varying degrees. During the first year of life, these tumors are strongly proliferative, reaching an average size ranging from 2 to 20 cm. These lesions subsequently stabilize, undergo a spontaneous slow involution and are fully regressed by 5 to 10 years of age. Systemic treatment of infants with the non-selective β-adrenergic receptor blocker, propranolol, has demonstrated remarkable efficacy in reducing the size and appearance of IHs. However, the mechanism by which this occurs is largely unknown. In this study, we sought to understand the molecular mechanisms underlying the effectiveness of β blocker treatment in IHs. Our data reveal that propranolol treatment of IH endothelial cells, as well as a panel of normal primary endothelial cells, blocks endothelial cell proliferation, migration, and formation of the actin cytoskeleton coincident with alterations in vascular endothelial growth factor receptor-2 (VEGFR-2), p38 and cofilin signaling. Moreover, propranolol induces major alterations in the protein levels of key cyclins and cyclin-dependent kinase inhibitors, and modulates global gene expression patterns with a particular affect on genes involved in lipid/sterol metabolism, cell cycle regulation, angiogenesis and ubiquitination. Interestingly, the effects of propranolol were endothelial cell-type independent, affecting the properties of IH endothelial cells at similar levels to that observed in neonatal dermal microvascular and coronary artery endothelial cells. This data suggests that while propranolol markedly inhibits hemangioma and normal endothelial cell function, its lack of endothelial cell specificity hints that the efficacy of this drug in the treatment of IHs may be more complex than simply blockage of endothelial function as previously believed.
  • Thumbnail Image
    Publication
    Cyclic Strain Induces Dual-Mode Endothelial-Mesenchymal Transformation of the Cardiac Valve
    (Proceedings of the National Academy of Sciences, 2011) Balachandran, Kartik; Alford, Patrick W.; Wylie-Sears, Jill; Goss, Josue; Grosberg, Anna; Bischoff, Joyce; Aikawa, Elena; Levine, Robert; Parker, Kevin
    Endothelial-mesenchymal transformation (EMT) is a critical event for the embryonic morphogenesis of cardiac valves. Inducers of EMT during valvulogenesis include VEGF, TGF-β1, and wnt/β-catenin (where wnt refers to the wingless-type mammary tumor virus integration site family of proteins), that are regulated in a spatiotemporal manner. EMT has also been observed in diseased, strain-overloaded valve leaflets, suggesting a regulatory role for mechanical strain. Although the preponderance of studies have focused on the role of soluble mitogens, we asked if the valve tissue microenvironment contributed to EMT. To recapitulate these microenvironments in a controlled, in vitro environment, we engineered 2D valve endothelium from sheep valve endothelial cells, using microcontact printing to mimic the regions of isotropy and anisotropy of the leaflet, and applied cyclic mechanical strain in an attempt to induce EMT. We measured EMT in response to both low (10%) and high strain (20%), where low-strain EMT occurred via increased TGF-β1 signaling and high strain via increased wnt/β-catenin signaling, suggesting dual strain-dependent routes to distinguish EMT in healthy versus diseased valve tissue. The effect was also directionally dependent, where cyclic strain applied orthogonal to axis of the engineered valve endothelium alignment resulted in severe disruption of cell microarchitecture and greater EMT. Once transformed, these tissues exhibited increased contractility in the presence of endothelin-1 and larger basal mechanical tone in a unique assay developed to measure the contractile tone of the engineered valve tissues. This finding is important, because it implies that the functional properties of the valve are sensitive to EMT. Our results suggest that cyclic mechanical strain regulates EMT in a strain magnitude and directionally dependent manner.
  • Thumbnail Image
    Publication
    Neuropilin-1 functions as a VEGFR2 co-receptor to guide developmental angiogenesis independent of ligand binding
    (eLife Sciences Publications, Ltd, 2014) Gelfand, Maria V; Hagan, Nellwyn; Tata, Aleksandra; Oh, Won-Jong; Lacoste, Baptiste; Kang, Kyu-Tae; Kopycinska, Justyna; Bischoff, Joyce; Wang, Jia-Huai; Gu, Chenghua
    During development, tissue repair, and tumor growth, most blood vessel networks are generated through angiogenesis. Vascular endothelial growth factor (VEGF) is a key regulator of this process and currently both VEGF and its receptors, VEGFR1, VEGFR2, and Neuropilin1 (NRP1), are targeted in therapeutic strategies for vascular disease and cancer. NRP1 is essential for vascular morphogenesis, but how NRP1 functions to guide vascular development has not been completely elucidated. In this study, we generated a mouse line harboring a point mutation in the endogenous Nrp1 locus that selectively abolishes VEGF-NRP1 binding (Nrp1VEGF−). Nrp1VEGF− mutants survive to adulthood with normal vasculature revealing that NRP1 functions independent of VEGF-NRP1 binding during developmental angiogenesis. Moreover, we found that Nrp1-deficient vessels have reduced VEGFR2 surface expression in vivo demonstrating that NRP1 regulates its co-receptor, VEGFR2. Given the resources invested in NRP1-targeted anti-angiogenesis therapies, our results will be integral for developing strategies to re-build vasculature in disease. DOI: http://dx.doi.org/10.7554/eLife.03720.001
  • Thumbnail Image
    Publication
    Endothelial colony forming cells and mesenchymal progenitor cells form blood vessels and increase blood flow in ischemic muscle
    (Nature Publishing Group UK, 2017) Kang, Kyu-Tae; Lin, Ruei-Zeng; Kuppermann, David; Melero-Martin, Juan; Bischoff, Joyce
    Here we investigated whether endothelial colony forming cells (ECFC) and mesenchymal progenitor cells (MPC) form vascular networks and restore blood flow in ischemic skeletal muscle, and whether host myeloid cells play a role. ECFC + MPC, ECFC alone, MPC alone, or vehicle alone were injected into the hind limb ischemic muscle one day after ligation of femoral artery and vein. At day 5, hind limbs injected with ECFC + MPC showed greater blood flow recovery compared with ECFC, MPC, or vehicle. Tail vein injection of human endothelial specific Ulex europaeus agglutinin-I demonstrated an increased number of perfused human vessels in ECFC + MPC compared with ECFC. In vivo bioluminescence imaging showed ECFC persisted for 14 days in ECFC + MPC-injected hind limbs. Flow cytometric analysis of ischemic muscles at day 2 revealed increased myeloid lineage cells in ECFC + MPC-injected muscles compared to vehicle-injected muscles. Neutrophils declined by day 7, while the number of myeloid cells, macrophages, and monocytes did not. Systemic myeloid cell depletion with anti-Gr-1 antibody blocked the improved blood flow observed with ECFC + MPC and reduced ECFC and MPC retention. Our data suggest that ECFC + MPC delivery could be used to reestablish blood flow in ischemic tissues, and this may be enhanced by coordinated recruitment of host myeloid cells.
  • Thumbnail Image
    Publication
    Abstract 135: A Somatic GNA11 Mutation is Associated with Extremity Capillary Malformation and Overgrowth
    (Wolters Kluwer Health, 2017) Couto, Javier A.; Ayturk, Ugur M.; Konczyk, Dennis J.; Goss, Jeremy; Huang, August Y.; Hann, Steven; Reeve, Jennifer L.; Liang, Marilyn; Bischoff, Joyce; Warman, Matthew; Greene, Arin
  • Thumbnail Image
    Publication
    Altered ratios of pro‐ and anti‐angiogenic VEGF‐A variants and pericyte expression of DLL4 disrupt vascular maturation in infantile haemangioma
    (John Wiley & Sons, Ltd, 2016) Ye, Xi; Abou‐Rayyah, Yassir; Bischoff, Joyce; Ritchie, Alison; Sebire, Neil J; Watts, Patrick; Churchill, Amanda J; Bates, David O
    Abstract Infantile haemangioma (IH), the most common neoplasm in infants, is a slowly resolving vascular tumour. Vascular endothelial growth factor A (VEGF‐A), which consists of both the pro‐ and anti‐angiogenic variants, contributes to the pathogenesis of IH. However, the roles of different VEGF‐A variants in IH progression and its spontaneous involution is unknown. Using patient‐derived cells and surgical specimens, we showed that the relative level of VEGF‐A165b was increased in the involuting phase of IH and the relative change in VEGF‐A isoforms may be dependent on endothelial differentiation of IH stem cells. VEGFR signalling regulated IH cell functions and VEGF‐A165b inhibited cell proliferation and the angiogenic potential of IH endothelial cells in vitro and in vivo. The inhibition of angiogenesis by VEGF‐A165b was associated with the extent of VEGF receptor 2 (VEGFR2) activation and degradation and Delta‐like ligand 4 (DLL4) expression. These results indicate that VEGF‐A variants can be regulated by cell differentiation and are involved in IH progression. We also demonstrated that DLL4 expression was not exclusive to the endothelium in IH but was also present in pericytes, where the expression of VEGFR2 is absent, suggesting that pericyte‐derived DLL4 may prevent sprouting during involution, independently of VEGFR2. Angiogenesis in IH therefore appears to be controlled by DLL4 within the endothelium in a VEGF‐A isoform‐dependent manner, and in perivascular cells in a VEGF‐independent manner. The contribution of VEGF‐A isoforms to disease progression also indicates that IH may be associated with altered splicing. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
  • Thumbnail Image
    Publication
    The GPR 55 agonist, L-α-lysophosphatidylinositol, mediates ovarian carcinoma cell-induced angiogenesis
    (John Wiley & Sons, Ltd, 2015) Hofmann, Nicole A; Yang, Jiang; Trauger, Sunia; Nakayama, Hironao; Huang, Lan; Strunk, Dirk; Moses, Marsha; Klagsbrun, Michael; Bischoff, Joyce; Graier, Wolfgang F
    Background and Purpose Highly vascularized ovarian carcinoma secretes the putative endocannabinoid and GPR55 agonist, L-α-lysophosphatidylinositol (LPI), into the circulation. We aimed to assess the involvement of this agonist and its receptor in ovarian cancer angiogenesis. Experimental Approach Secretion of LPI by three ovarian cancer cell lines (OVCAR-3, OVCAR-5 and COV-362) was tested by mass spectrometry. Involvement of cancer cell-derived LPI on angiogenesis was tested in the in vivo chicken chorioallantoic membrane (CAM) assay along with the assessment of the effect of LPI on proliferation, network formation, and migration of neonatal and adult human endothelial colony-forming cells (ECFCs). Engagement of GPR55 was verified by using its pharmacological inhibitor CID16020046 and diminution of GPR55 expression by four different target-specific siRNAs. To study underlying signal transduction, Western blot analysis was performed. Key Results Ovarian carcinoma cell-derived LPI stimulated angiogenesis in the CAM assay. Applied LPI stimulated proliferation, network formation, and migration of neonatal ECFCs in vitro and angiogenesis in the in vivo CAM. The pharmacological GPR55 inhibitor CID16020046 inhibited LPI-stimulated ECFC proliferation, network formation and migration in vitro as well as ovarian carcinoma cell- and LPI-induced angiogenesis in vivo. Four target-specific siRNAs against GPR55 prevented these effects of LPI on angiogenesis. These pro-angiogenic effects of LPI were transduced by GPR55-dependent phosphorylation of ERK1/2 and p38 kinase. Conclusions and Implications We conclude that inhibiting the pro-angiogenic LPI/GPR55 pathway appears a promising target against angiogenesis in ovarian carcinoma.
  • Thumbnail Image
    Publication
    Endoglin regulates mural cell adhesion in the circulatory system
    (Springer International Publishing, 2015) Rossi, Elisa; Smadja, David M.; Boscolo, Elisa; Langa, Carmen; Arevalo, Miguel A.; Pericacho, Miguel; Gamella-Pozuelo, Luis; Kauskot, Alexandre; Botella, Luisa M.; Gaussem, Pascale; Bischoff, Joyce; Lopez-Novoa, José M.; Bernabeu, Carmelo
    The circulatory system is walled off by different cell types, including vascular mural cells and podocytes. The interaction and interplay between endothelial cells (ECs) and mural cells, such as vascular smooth muscle cells or pericytes, play a pivotal role in vascular biology. Endoglin is an RGD-containing counter-receptor for β1 integrins and is highly expressed by ECs during angiogenesis. We find that the adhesion between vascular ECs and mural cells is enhanced by integrin activators and inhibited upon suppression of membrane endoglin or β1-integrin, as well as by addition of soluble endoglin (SolEng), anti-integrin α5β1 antibody or an RGD peptide. Analysis of different endoglin mutants, allowed the mapping of the endoglin RGD motif as involved in the adhesion process. In Eng+/− mice, a model for hereditary hemorrhagic telangectasia type 1, endoglin haploinsufficiency induces a pericyte-dependent increase in vascular permeability. Also, transgenic mice overexpressing SolEng, an animal model for preeclampsia, show podocyturia, suggesting that SolEng is responsible for podocytes detachment from glomerular capillaries. These results suggest a critical role for endoglin in integrin-mediated adhesion of mural cells and provide a better understanding on the mechanisms of vessel maturation in normal physiology as well as in pathologies such as preeclampsia or hereditary hemorrhagic telangiectasia. Electronic supplementary material The online version of this article (doi:10.1007/s00018-015-2099-4) contains supplementary material, which is available to authorized users.