Person: Narayan, Gautham
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Narayan
First Name
Gautham
Name
Narayan, Gautham
10 results
Search Results
Now showing 1 - 10 of 10
Publication Cosmological Constraints from Measurements of Type Ia Supernovae Discovered during the First 1.5 yr of the Pan-STARRS1 Survey(IOP Publishing, 2014) Rest, Armin; Scolnic, D.; Foley, R. J.; Huber, M. E.; Chornock, R.; Narayan, Gautham; Tonry, J. L.; Berger, Edo; Soderberg, Alicia; Stubbs, Christopher; Riess, A.; Kirshner, Robert; Smartt, S. J.; Schlafly, E.; Rodney, S.; Botticella, M. T.; Brout, D.; Challis, P.; Czekala, Ian; Drout, Maria Rebecca; Hudson, M. J.; Kotak, R.; Leibler, C.; Lunnan, R; Marion, G. H.; McCrum, M.; Milisavljevic, D.; Pastorello, A.; Sanders, Nathan Edward; Smith, K.; Stafford, E.; Thilker, D.; Valenti, S.; Wood-Vasey, W. M.; Zheng, Z.; Burgett, W. S.; Chambers, K. C.; Denneau, L.; Draper, P. W.; Flewelling, H.; Hodapp, K. W.; Kaiser, N.; Kudritzki, R.-P.; Magnier, E. A.; Metcalfe, N.; Price, P. A.; Sweeney, W.; Wainscoat, R.; Waters, C.We present griz P1 light curves of 146 spectroscopically confirmed Type Ia supernovae (SNe Ia; 0.03 < z < 0.65) discovered during the first 1.5 yr of the Pan-STARRS1 Medium Deep Survey. The Pan-STARRS1 natural photometric system is determined by a combination of on-site measurements of the instrument response function and observations of spectrophotometric standard stars. We find that the systematic uncertainties in the photometric system are currently 1.2% without accounting for the uncertainty in the Hubble Space Telescope Calspec definition of the AB system. A Hubble diagram is constructed with a subset of 113 out of 146 SNe Ia that pass our light curve quality cuts. The cosmological fit to 310 SNe Ia (113 PS1 SNe Ia + 222 light curves from 197 low-z SNe Ia), using only supernovae (SNe) and assuming a constant dark energy equation of state and flatness, yields $w=-1.120^{+0.360}_{-0.206}\hbox{(Stat)} ^{+0.269}_{-0.291}\hbox{(Sys)}$. When combined with BAO+CMB(Planck)+H 0, the analysis yields $\Omega _{\rm M}=0.280^{+0.013}_{-0.012}$ and $w=-1.166^{+0.072}_{-0.069}$ including all identified systematics. The value of w is inconsistent with the cosmological constant value of –1 at the 2.3σ level. Tension endures after removing either the baryon acoustic oscillation (BAO) or the H 0 constraint, though it is strongest when including the H 0 constraint. If we include WMAP9 cosmic microwave background (CMB) constraints instead of those from Planck, we find $w=-1.124^{+0.083}_{-0.065}$, which diminishes the discord to <2σ. We cannot conclude whether the tension with flat ΛCDM is a feature of dark energy, new physics, or a combination of chance and systematic errors. The full Pan-STARRS1 SN sample with ~three times as many SNe should provide more conclusive results.Publication Slowly Fading Super-Luminous Supernovae That Are Not Pair-Instability Explosions(Nature Publishing Group, 2013) Nicholl, M.; Smartt, S. J.; Jerkstrand, A.; Inserra, C.; McCrum, M.; Kotak, R.; Fraser, M.; Wright, D.; Chen, T.-W.; Smith, K.; Young, D. R.; Sim, S. A.; Valenti, S.; Howell, D. A.; Bresolin, F.; Kudritzki, R. P.; Tonry, J. L.; Huber, M. E.; Rest, A.; Pastorello, A.; Tomasella, L.; Cappellaro, E.; Benetti, S.; Mattila, S.; Kankare, E.; Kangas, T.; Leloudas, G.; Sollerman, J.; Taddia, F.; Berger, E.; Chornock, R; Narayan, Gautham; Stubbs, Christopher; Foley, R. J.; Lunnan, R; Soderberg, Alicia; Sanders, Nathan Edward; Milisavljevic, Danny; Margutti, Raffaella; Kirshner, Robert; Elias-Rosa, N.; Morales-Garoffolo, A.; Taubenberger, S.; Botticella, M. T.; Gezari, S.; Urata, Y.; Rodney, S.; Riess, A. G.; Scolnic, D.; Wood-Vasey, W. M.; Burgett, W. S.; Chambers, K.; Flewelling, H. A.; Magnier, E. A.; Kaiser, N.; Metcalfe, N.; Morgan, J.; Price, P. A.; Sweeney, W.; Waters, C.Super-luminous supernovae that radiate more than 10\(^{44}\) ergs per second at their peak luminosity have recently been discovered in faint galaxies at redshifts of 0.1–4. Some evolve slowly, resembling models of ‘pair-instability’ supernovae. Such models involve stars with original masses 140–260 times that of the Sun that now have carbon–oxygen cores of 65–130 solar masses. In these stars, the photons that prevent gravitational collapse are converted to electron–positron pairs, causing rapid contraction and thermonuclear explosions. Many solar masses of \(^{56}\)Ni are synthesized; this isotope decays to \(^{56}\)Fe via \(^{56}\)Co, powering bright light curves. Such massive progenitors are expected to have formed from metal-poor gas in the early Universe. Recently, supernova 2007bi in a galaxy at redshift 0.127 (about 12 billion years after the Big Bang) with a metallicity one-third that of the Sun was observed to look like a fading pair-instability supernova. Here we report observations of two slow-to-fade super-luminous supernovae that show relatively fast rise times and blue colours, which are incompatible with pair-instability models. Their late-time light-curve and spectral similarities to supernova 2007bi call the nature of that event into question. Our early spectra closely resemble typical fast-declining super-luminous supernovae, which are not powered by radioactivity. Modelling our observations with 10–16 solar masses of magnetar-energized ejecta demonstrates the possibility of a common explosion mechanism. The lack of unambiguous nearby pair-instability events suggests that their local rate of occurrence is less than 6 × 10\(^{−6}\) times that of the core-collapse rate.Publication PS1-10afx at z = 1.388: Pan-STARRS1 Discovery of a New Type of Superluminous Supernova(American Astronomical Society, 2013) Chornock, R; Berger, Edo; Rest, A.; Milisavljevic, Danny; Lunnan, R; Foley, R. J.; Soderberg, Alicia; Smartt, S. J.; Burgasser, A. J.; Challis, Peter; Chomiuk, L.; Czekala, Ian; Drout, Maria Rebecca; Fong, W; Huber, M. E.; Kirshner, Robert; Leibler, C.; McLeod, Brian; Marion, G. H.; Narayan, Gautham; Riess, A. G.; Roth, K. C.; Sanders, Nathan Edward; Scolnic, D.; Smith, K.; Stubbs, Christopher; Tonry, J. L.; Valenti, S.; Burgett, W. S.; Chambers, K. C.; Hodapp, K. W.; Kaiser, N.; Kudritzki, R.-P.; Magnier, E. A.; Price, P. A.We present the Pan-STARRS1 discovery of PS1-10afx, a unique hydrogen-deficient superluminous supernova (SLSN) at redshift z = 1.388. The light curve peaked at z P1 = 21.7 mag, making PS1-10afx comparable to the most luminous known SNe, with Mu = –22.3 mag. Our extensive optical and near-infrared observations indicate that the bolometric light curve of PS1-10afx rose on the unusually fast timescale of ~12 days to the extraordinary peak luminosity of 4.1 × 1044 erg s–1 (M bol = –22.8 mag) and subsequently faded rapidly. Equally important, the spectral energy distribution is unusually red for an SLSN, with a color temperature of ~6800 K near maximum light, in contrast to previous hydrogen-poor SLSNe, which are bright in the ultraviolet (UV). The spectra more closely resemble those of a normal SN Ic than any known SLSN, with a photospheric velocity of ~11, 000 km s–1 and evidence for line blanketing in the rest-frame UV. Despite the fast rise, these parameters imply a very large emitting radius (gsim 5 × 1015 cm). We demonstrate that no existing theoretical model can satisfactorily explain this combination of properties: (1) a nickel-powered light curve cannot match the combination of high peak luminosity with the fast timescale; (2) models powered by the spindown energy of a rapidly rotating magnetar predict significantly hotter and faster ejecta; and (3) models invoking shock breakout through a dense circumstellar medium cannot explain the observed spectra or color evolution. The host galaxy is well detected in pre-explosion imaging with a luminosity near L*, a star formation rate of ~15 M ☉ yr–1, and is fairly massive (~2 × 1010 M ☉), with a stellar population age of ~108 yr, also in contrast to the young dwarf hosts of known hydrogen-poor SLSNe. PS1-10afx is distinct from known examples of SLSNe in its spectra, colors, light-curve shape, and host galaxy properties, suggesting that it resulted from a different channel than other hydrogen-poor SLSNe.Publication An Ultraviolet–Optical Flare from the Tidal Disruption of a Helium-Rich Stellar Core(Nature Publishing Group, 2012) Gezari, S.; Chornock, R; Rest, A.; Huber, M. E.; Forster, K.; Berger, Edo; Challis, Peter J.; Neill, J. D.; Martin, D. C.; Heckman, T.; Lawrence, A.; Norman, C.; Narayan, Gautham; Foley, R. J.; Marion, G. H.; Scolnic, D.; Chomiuk, Laura; Soderberg, Alicia; Smith, K.; Kirshner, Robert; Riess, A. G.; Smartt, S. J.; Stubbs, Christopher; Tonry, J. L.; Wood-Vasey, W. M.; Burgett, W. S.; Chambers, K. C.; Grav, T.; Heasley, J. N.; Kaiser, N.; Kudritzki, R.-P.; Magnier, E. A.; Morgan, J. S.; Price, P. A.The flare of radiation from the tidal disruption and accretion of a star can be used as a marker for supermassive black holes that otherwise lie dormant and undetected in the centres of distant galaxies1. Previous candidate flares2, 3, 4, 5, 6 have had declining light curves in good agreement with expectations, but with poor constraints on the time of disruption and the type of star disrupted, because the rising emission was not observed. Recently, two ‘relativistic’ candidate tidal disruption events were discovered, each of whose extreme X-ray luminosity and synchrotron radio emission were interpreted as the onset of emission from a relativistic jet7, 8, 9, 10. Here we report a luminous ultraviolet–optical flare from the nuclear region of an inactive galaxy at a redshift of 0.1696. The observed continuum is cooler than expected for a simple accreting debris disk, but the well-sampled rise and decay of the light curve follow the predicted mass accretion rate and can be modelled to determine the time of disruption to an accuracy of two days. The black hole has a mass of about two million solar masses, modulo a factor dependent on the mass and radius of the star disrupted. On the basis of the spectroscopic signature of ionized helium from the unbound debris, we determine that the disrupted star was a helium-rich stellar core.Publication Pan-STARRS1 Discovery of Two Ultraluminous Supernovae at z ≈ 0.9(IOP Publishing, 2011) Chomiuk, Laura; Chornock, R; Soderberg, Alicia; Berger, Edo; Chevalier, R. A.; Foley, R. J.; Huber, M. E.; Narayan, Gautham; Rest, A.; Gezari, S.; Kirshner, Robert; Riess, A.; Rodney, S. A.; Smartt, S. J.; Stubbs, Christopher; Tonry, J. L.; Wood-Vasey, W. M.; Burgett, W. S.; Chambers, K. C.; Czekala, Ian; Flewelling, H.; Forster, K.; Kaiser, N.; Kudritzki, R.-P.; Magnier, E. A.; Martin, D. C.; Morgan, J. S.; Neill, J. D.; Price, P. A.; Roth, K. C.; Sanders, Nathan Edward; Wainscoat, R. J.We present the discovery of two ultraluminous supernovae (SNe) at z ≈ 0.9 with the Pan-STARRS1 Medium Deep Survey. These SNe, PS1-10ky and PS1-10awh, are among the most luminous SNe ever discovered, comparable to the unusual transients SN 2005ap and SCP 06F6. Like SN 2005ap and SCP 06F6, they show characteristic high luminosities (M bol ≈ –22.5 mag), blue spectra with a few broad absorption lines, and no evidence for H or He. We have constructed a full multi-color light curve sensitive to the peak of the spectral energy distribution in the rest-frame ultraviolet, and we have obtained time series spectroscopy for these SNe. Given the similarities between the SNe, we combine their light curves to estimate a total radiated energy over the course of explosion of (0.9-1.4) × 1051 erg. We find photospheric velocities of 12,000-19,000 km s–1 with no evidence for deceleration measured across ~3 rest-frame weeks around light curve peak, consistent with the expansion of an optically thick massive shell of material. We show that, consistent with findings for other ultraluminous SNe in this class, radioactive decay is not sufficient to power PS1-10ky, and we discuss two plausible origins for these events: the initial spin-down of a newborn magnetar in a core-collapse SN, or SN shock breakout from the dense circumstellar wind surrounding a Wolf-Rayet star.Publication Rapidly evolving and luminous transients from Pan-STARRS1(IOP Publishing, 2014) Drout, Maria Rebecca; Chornock, R; Soderberg, Alicia; Sanders, Nathan Edward; McKinnon, R.; Rest, Armin; Foley, R. J.; Milisavljevic, Danny; Margutti, Raffaella; Berger, Edo; Calkins, Michael; Fong, W; Gezari, S.; Huber, M. E.; Kankare, E.; Kirshner, Robert; Leibler, C.; Lunnan, R; Mattila, S.; Marion, G. H.; Narayan, Gautham; Riess, A. G.; Roth, K. C.; Scolnic, D.; Smartt, S. J.; Tonry, J. L.; Burgett, W. S.; Chambers, K. C.; Hodapp, K. W.; Jedicke, R.; Kaiser, N.; Magnier, E. A.; Metcalfe, N.; Morgan, J. S.; Price, P. A.; Waters, C.In the past decade, several rapidly evolving transients have been discovered whose timescales and luminosities are not easily explained by traditional supernovae (SNe) models. The sample size of these objects has remained small due, at least in part, to the challenges of detecting short timescale transients with traditional survey cadences. Here we present the results from a search within the Pan-STARRS1 Medium Deep Survey (PS1-MDS) for rapidly evolving and luminous transients. We identify 10 new transients with a time above half-maximum (t 1/2) of less than 12 days and –16.5 > M > –20 mag. This increases the number of known events in this region of SN phase space by roughly a factor of three. The median redshift of the PS1-MDS sample is z = 0.275 and they all exploded in star-forming galaxies. In general, the transients possess faster rise than decline timescale and blue colors at maximum light (g P1 – r P1 lesssim –0.2). Best-fit blackbodies reveal photospheric temperatures/radii that expand/cool with time and explosion spectra taken near maximum light are dominated by a blue continuum, consistent with a hot, optically thick, ejecta. We find it difficult to reconcile the short timescale, high peak luminosity (L > 1043 erg s–1), and lack of UV line blanketing observed in many of these transients with an explosion powered mainly by the radioactive decay of 56Ni. Rather, we find that many are consistent with either (1) cooling envelope emission from the explosion of a star with a low-mass extended envelope that ejected very little (<0.03 M ☉) radioactive material, or (2) a shock breakout within a dense, optically thick, wind surrounding the progenitor star. After calculating the detection efficiency for objects with rapid timescales in the PS1-MDS we find a volumetric rate of 4800-8000 events yr–1 Gpc–3 (4%-7% of the core-collapse SN rate at z = 0.2).Publication Zooming in on the progenitors of superluminous supernovae with the HST(IOP Publishing, 2015) Lunnan, R; Chornock, R; Berger, Edo; Rest, A.; Fong, W; Scolnic, D.; Jones, D. O.; Soderberg, Alicia; Challis, Peter; Drout, Maria Rebecca; Foley, R. J.; Huber, M. E.; Kirshner, Robert; Leibler, C.; Marion, G. H.; McCrum, M.; Milisavljevic, Danny; Narayan, Gautham; Sanders, Nathan Edward; Smartt, S. J.; Smith, K. W.; Tonry, J. L.; Burgett, W. S.; Chambers, K. C.; Flewelling, H.; Kudritzki, R.-P.; Wainscoat, R. J.; Waters, C.We present Hubble Space Telescope (HST) rest-frame ultraviolet imaging of the host galaxies of 16 hydrogen-poor superluminous supernovae (SLSNe), including 11 events from the Pan-STARRS Medium Deep Survey. Taking advantage of the superb angular resolution of HST, we characterize the galaxies' morphological properties, sizes, and star formation rate (SFR) densities. We determine the supernova (SN) locations within the host galaxies through precise astrometric matching and measure physical and host-normalized offsets as well as the SN positions within the cumulative distribution of UV light pixel brightness. We find that the host galaxies of H-poor SLSNe are irregular, compact dwarf galaxies, with a median half-light radius of just 0.9 kpc. The UV-derived SFR densities are high ($\langle {{{\Sigma }}_{{\rm SFR}}}\rangle \simeq 0.1{{M}_{\odot }}\;{\rm y}{{{\rm r}}^{-1}}\;{\rm kp}{{{\rm c}}^{-2}}$), suggesting that SLSNe form in overdense environments. Their locations trace the UV light of their host galaxies, with a distribution intermediate between that of long-duration gamma-ray bursts (LGRBs; which are strongly clustered on the brightest regions of their hosts) and a uniform distribution (characteristic of normal core-collapse SNe), though cannot be statistically distinguished from either with the current sample size. Taken together, this strengthens the picture that SLSN progenitors require different conditions than those of ordinary core-collapse SNe to form and that they explode in broadly similar galaxies as do LGRBs. If the tendency for SLSNe to be less clustered on the brightest regions than are LGRBs is confirmed by a larger sample, this would indicate a different, potentially lower-mass progenitor for SLSNe than LRGBs.Publication The Ultraviolet-Bright, Slowly Declining Transient PS1-11af as a Partial Tidal Disruption Event.(IOP Publishing, 2013) Chornock, R.; Berger, Edo; Gezari, S.; Zauderer, B; Rest, A.; Chomiuk, L.; Kamble, Atish; Soderberg, Alicia; Czekala, Ian; Dittmann, Jason Adam; Drout, Maria Rebecca; Foley, R. J.; Fong, W; Huber, M. E.; Kirshner, Robert; Lawrence, A.; Lunnan, R; Marion, G. H.; Narayan, Gautham; Riess, A. G.; Roth, K. C.; Sanders, Nathan Edward; Scolnic, D.; Smartt, S. J.; Smith, K.; Stubbs, Christopher; Tonry, J. L.; Burgett, W. S.; Chambers, K. C.; Flewelling, H.; Hodapp, K. W.; Kaiser, N.; Magnier, E. A.; Martin, D. C.; Neill, J. D.; Price, P. A.; Wainscoat, R.We present the Pan-STARRS1 discovery of the long-lived and blue transient PS1-11af, which was also detected by Galaxy Evolution Explorer with coordinated observations in the near-ultraviolet (NUV) band. PS1-11af is associated with the nucleus of an early type galaxy at redshift z = 0.4046 that exhibits no evidence for star formation or active galactic nucleus activity. Four epochs of spectroscopy reveal a pair of transient broad absorption features in the UV on otherwise featureless spectra. Despite the superficial similarity of these features to P-Cygni absorptions of supernovae (SNe), we conclude that PS1-11af is not consistent with the properties of known types of SNe. Blackbody fits to the spectral energy distribution are inconsistent with the cooling, expanding ejecta of a SN, and the velocities of the absorption features are too high to represent material in homologous expansion near a SN photosphere. However, the constant blue colors and slow evolution of the luminosity are similar to previous optically selected tidal disruption events (TDEs). The shape of the optical light curve is consistent with models for TDEs, but the minimum accreted mass necessary to power the observed luminosity is only ∼0.002 M , which points to a partial disruption model. A full disruption model predicts higher bolometric luminosities, which would require most of the radiation to be emitted in a separate component at high energies where we lack observations. In addition, the observed temperature is lower than that predicted by pure accretion disk models for TDEs and requires reprocessing to a constant, lower temperature. Three deep non-detections in the radio with the Very Large Array over the first two years after the event set strict limits on the production of any relativistic outflow comparable to Swift J1644+57, even if off-axis.Publication Light Curves of Type Ia Supernovae and Preliminary Cosmological Constraints from the ESSENCE Survey(2013-09-30) Narayan, Gautham; Stubbs, Christopher William; Kirshner, Robert; Finkbeiner, DouglasThe ESSENCE survey discovered 213 type Ia supernovae at redshifts 0.10 < z < 0.81 between 2002 and 2008. We present their R and I band light curve measurements, obtained using the MOSAIC II imager at the CTIO 4 m, along with rapid response spectroscopy for each object from a range of large aperture ground based telescopes. We detail our program to obtain quantitative classifications and precise redshifts from our spectroscopic follow-up of each object. We describe our efforts to improve the precision of the calibration of the CTIO 4 m natural photometric system. We use several empirical metrics to measure our internal photometric consistency and our absolute calibration of the survey. We assess the effect of various sources of systematic error on our measured fluxes, and estimate that the total systematic error budget from the photometric calibration is ~1%. We combine 108 ESSENCE SNIa that pass stringent quality cuts with a compilation of 441 SNIa from 3 year results presented by the Supernova Legacy Survey and Baryon Acoustic Oscillation measurements from the Sloan Digital Sky Survey to produce preliminary cosmological constraints employing the SNIa . This constitutes the largest sample of well-calibrated, spectroscopically confirmed SNIa to date. Assuming a flat Universe, we obtain a joint constraint of \(\Omega_M = 0.266^{+0.026}_{-0.016}(stat 1\sigma)\), and \(w = -1.112^{+0.069}_{-0.072}(stat 1\sigma)\). These measurements are consistent with a cosmological constant.Publication Precise Throughput Determination of the PanSTARRS Telescope and the Gigapixel Imager using a Calibrated Silicon Photodiode and a Tunable Laser: Initial Results(Institute of Physics, 2010) Stubbs, Christopher; Doherty, Peter; Cramer, Claire; Narayan, Gautham; Brown, Yorke; Lykke, Keith; Woodward, John; Tonry, JohnWe have used a precision calibrated photodiode as the fundamental metrology reference in order to determine the relative throughput of the PanSTARRS telescope and the Gigapixel imager, from 400 nm to 1050 nm. Our technique uses a tunable laser as a source of illumination on a transmissive flat-field screen. We determine the full-aperture system throughput as a function of wavelength, including (in a single integral measurement) the mirror reflectivity, the transmission functions of the filters and the corrector optics, and the detector quantum efficiency, by comparing the light seen by each pixel in the CCD array to that measured by a precision-calibrated silicon photodiode. This method allows us to determine the relative throughput of the entire system as a function of wavelength, for each pixel in the instrument, without observations of celestial standards. We present promising initial results from this characterization of the PanSTARRS system, and we use synthetic photometry to assess the photometric perturbations due to throughput variation across the field of view.