Person: Martin, Scot
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Martin
First Name
Scot
Name
Martin, Scot
16 results
Search Results
Now showing 1 - 10 of 16
Publication Fluorescence Aerosol Flow Tube Spectroscopy to Detect Liquid–Liquid Phase Separation(American Chemical Society (ACS), 2021-05-06) Ohno, Paul; Qin, Yi Ming; Ye, Jianhuai; Wang, Junfeng; Bertram, Allan; Martin, ScotThe phase behavior of atmospheric aerosol particles influences processes like gas-particle partitioning, solar light scattering, and cloud formation, ultimately affecting atmospheric air quality and climate. An important aspect of this phase behavior is whether an individual particle exists in a single homogenous phase or undergoes liquid-liquid phase separation (LLPS). Herein, fluorescence aerosol flow tube (F-AFT) spectroscopy is developed to characterize LLPS in aerosolized submicron particles of 100 to 200 nm. A solvatochromic fluorescent probe molecule is incorporated into the particles. The link between its fluorescence emission and the local particle-phase chemical environment is used to determine the separation relative humidity (SRH) at which LLPS occurs. The LLPS behaviors of mixed organic/inorganic particles composed of polyethylene glycol (PEG), ammonium sulfate (AS), and sodium chloride (NaCl) are characterized. PEG/AS particles undergo LLPS at SRH values that vary with PEG composition. By comparison, PEG/NaCl particles continue as a single homogenous phase to the RH of NaCl crystallization. The SRH values for the submicron particles are >5% RH lower than those reported in the literature of supermicron particles deposited to substrate surfaces. Possible reasons for the differences are discussed, including kinetic and thermodynamic effects of system size and foreign substrate as well as observation time in the experimental apparatus.Publication Isoprene photo-oxidation products quantify the effect of pollution on hydroxyl radicals over Amazonia(American Association for the Advancement of Science, 2018) Liu, Yingjun; Seco, Roger; Kim, Saewung; Guenther, Alex B.; Goldstein, Allen H.; Keutsch, Frank; Springston, Stephen R.; Watson, Thomas B.; Artaxo, Paulo; Souza, Rodrigo A. F.; McKinney, Karena; Martin, ScotNitrogen oxides (NOx) emitted from human activities are believed to regulate the atmospheric oxidation capacity of the troposphere. However, observational evidence is limited for the low-to-median NOx concentrations prevalent outside of polluted regions. Directly measuring oxidation capacity, represented primarily by hydroxyl radicals (OH), is challenging, and the span in NOx concentrations at a single observation site is often not wide. Concentrations of isoprene and its photo-oxidation products were used to infer the equivalent noontime OH concentrations. The fetch at an observation site in central Amazonia experienced varied contributions from background regional air, urban pollution, and biomass burning. The afternoon concentrations of reactive nitrogen oxides (NOy), indicative of NOx exposure during the preceding few hours, spanned from 0.3 to 3.5 parts per billion. Accompanying the increase of NOy concentration, the inferred equivalent noontime OH concentrations increased by at least 250% from 0.6 × 106 to 1.6 × 106 cm−3. The conclusion is that, compared to background conditions of low NOx concentrations over the Amazon forest, pollution increased NOx concentrations and amplified OH concentrations, indicating the susceptibility of the atmospheric oxidation capacity over the forest to anthropogenic influence and reinforcing the important role of NOx in sustaining OH concentrations.Publication The viscosity of atmospherically relevant organic particles(Nature Publishing Group UK, 2018) Reid, Jonathan P.; Bertram, Allan K.; Topping, David O.; Laskin, Alexander; Martin, Scot; Petters, Markus D.; Pope, Francis D.; Rovelli, GraziaThe importance of organic aerosol particles in the environment has been long established, influencing cloud formation and lifetime, absorbing and scattering sunlight, affecting atmospheric composition and impacting on human health. Conventionally, ambient organic particles were considered to exist as liquids. Recent observations in field measurements and studies in the laboratory suggest that they may instead exist as highly viscous semi-solids or amorphous glassy solids under certain conditions, with important implications for atmospheric chemistry, climate and air quality. This review explores our understanding of aerosol particle phase, particularly as identified by measurements of the viscosity of organic particles, and the atmospheric implications of phase state.Publication Highly Viscous States Affect the Browning of Atmospheric Organic Particulate Matter(American Chemical Society, 2018) Liu, Pengfei; Li, Yong Jie; Wang, Yan; Bateman, Adam P.; Zhang, Yue; Gong, Zhaoheng; Bertram, Allan K.; Martin, ScotInitially transparent organic particulate matter (PM) can become shades of light-absorbing brown via atmospheric particle-phase chemical reactions. The production of nitrogen-containing compounds is one important pathway for browning. Semisolid or solid physical states of organic PM might, however, have sufficiently slow diffusion of reactant molecules to inhibit browning reactions. Herein, organic PM of secondary organic material (SOM) derived from toluene, a common SOM precursor in anthropogenically affected environments, was exposed to ammonia at different values of relative humidity (RH). The production of light-absorbing organonitrogen imines from ammonia exposure, detected by mass spectrometry and ultraviolet–visible spectrophotometry, was kinetically inhibited for RH < 20% for exposure times of 6 min to 24 h. By comparison, from 20% to 60% RH organonitrogen production took place, implying ammonia uptake and reaction. Correspondingly, the absorption index k across 280 to 320 nm increased from 0.012 to 0.02, indicative of PM browning. The k value across 380 to 420 nm increased from 0.001 to 0.004. The observed RH-dependent behavior of ammonia uptake and browning was well captured by a model that considered the diffusivities of both the large organic molecules that made up the PM and the small reactant molecules taken up from the gas phase into the PM. Within the model, large-molecule diffusivity was calculated based on observed SOM viscosity and evaporation. Small-molecule diffusivity was represented by the water diffusivity measured by a quartz-crystal microbalance. The model showed that the browning reaction rates at RH < 60% could be controlled by the low diffusivity of the large organic molecules from the interior region of the particle to the reactive surface region. The results of this study have implications for accurate modeling of atmospheric brown carbon production and associated influences on energy balance.Publication Cloud Activation Potentials for Atmospheric α-Pinene and β-Caryophyllene Ozonolysis Products(American Chemical Society, 2017) Gray Bé, Ariana; Upshur, Mary Alice; Liu, Pengfei; Martin, Scot; Geiger, Franz M.; Thomson, Regan J.The formation of atmospheric cloud droplets due to secondary organic aerosol (SOA) particles is important for quantifying the Earth’s radiative balance under future, possibly warmer, climates, yet is only poorly understood. While cloud activation may be parametrized using the surface tension depression that coincides with surfactant partitioning to the gas–droplet interface, the extent to which cloud activation is influenced by both the chemical structure and reactivity of the individual molecules comprising this surfactant pool is largely unknown. We report herein considerable differences in the surface tension depression of aqueous pendant droplets that contain synthetically prepared ozonolysis products derived from α-pinene and β-caryophyllene, the most abundant of the monoterpenes and sesquiterpenes, respectively, that are emitted over the planet’s vast forest ecosystems. Oxidation products derived from β-caryophyllene were found to exhibit significantly higher surface activity than those prepared from α-pinene, with the critical supersaturation required for cloud droplet activation reduced by 50% for β-caryophyllene aldehyde at 1 mM. These considerable reductions in the critical supersaturation were found to coincide with free energies of adsorption that exceed ∼25 kJ/mol, or just one hydrogen bond equivalent, depending on the ammonium sulfate and oxidation product concentration in the solution. Additional experiments showed that aldehyde-containing oxidation products exist in equilibrium with hydrated forms in aqueous solution, which may modulate their bulk solubility and surface activity. Equilibration time scales on the order of 10–5 to 10–4 s calculated for micrometer-sized aerosol particles indicate instantaneous surface tension depression in the activation processes leading to cloud formation in the atmosphere. Our findings highlight the underlying importance of molecular structure and reactivity when considering cloud condensation activity in the presence of SOA particles.Publication Airborne observations reveal elevational gradient in tropical forest isoprene emissions(Nature Publishing Group, 2017) Gu, Dasa; Guenther, Alex B.; Shilling, John E.; Yu, Haofei; Huang, Maoyi; Zhao, Chun; Yang, Qing; Martin, Scot; Artaxo, Paulo; Kim, Saewung; Seco, Roger; Stavrakou, Trissevgeni; Longo, Karla M.; Tóta, Julio; de Souza, Rodrigo Augusto Ferreira; Vega, Oscar; Liu, Ying; Shrivastava, Manish; Alves, Eliane G.; Santos, Fernando C.; Leng, Guoyong; Hu, ZhiyuanIsoprene dominates global non-methane volatile organic compound emissions, and impacts tropospheric chemistry by influencing oxidants and aerosols. Isoprene emission rates vary over several orders of magnitude for different plants, and characterizing this immense biological chemodiversity is a challenge for estimating isoprene emission from tropical forests. Here we present the isoprene emission estimates from aircraft eddy covariance measurements over the Amazonian forest. We report isoprene emission rates that are three times higher than satellite top-down estimates and 35% higher than model predictions. The results reveal strong correlations between observed isoprene emission rates and terrain elevations, which are confirmed by similar correlations between satellite-derived isoprene emissions and terrain elevations. We propose that the elevational gradient in the Amazonian forest isoprene emission capacity is determined by plant species distributions and can substantially explain isoprene emission variability in tropical forests, and use a model to demonstrate the resulting impacts on regional air quality.Publication The 1-by-3 Tandem Differential Mobility Analyzer for Measurement of the Irreversibility of the Hygroscopic Growth Factor(Taylor & Francis Ltd, 2009) Rosenoern, T.; Paulsen, D.; Martin, ScotA new instrument, namely the 1 × 3 tandem differential mobility analyzer (1 × 3-TDMA), has been developed. Its primary measurement is the irreversibility of the hygroscopic growth factor of aerosol particles. The instrument uses the hysteresis of phase transitions to infer the solid or aqueous state of the particles. A first DMA passes particles of a selected electric mobility at relative humidity RH0. Exiting this DMA, the particles are split into three separate flows. The first flow is exposed to RH0 → (RH0+ δ) → RH0 in a deliquescence test before passing through a second DMA that is set to the same electric mobility as the first DMA. The second flow passes directly to a third DMA without change in RH, thereby serving as a reference arm. This DMA is also set to the same electric mobility as the first DMA. The transmission ratio of the 1 × 3-TDMA is defined as the particle concentration passing the deliquescence test divided by that passing through the reference arm. The transmission ratio is unity in the absence of deliquescence and zero when a phase transition occurs, at least for ideal instrument performance in application to a test aerosol of fully deliquesceable particles. For the third flow passing out of the first DMA, an efflorescence test is run by using the RH profile of RH0 → (RH0-δ) → RH0 before passing through a fourth DMA. A full data set for the 1 × 3-TDMA is obtained by scanning RH0, typically from 20 to 85%. In the present paper, the 1 × 3-TDMA instrument is described, and laboratory data are presented for the phase transitions of externally mixed aerosols of aqueous and solid sodium chloride particles, aqueous and solid ammonium sulfate particles, and their mixtures, as well as a mixture of aqueous and solid sea salt particles. The observed transmission ratio is compared to a model analysis. The intent behind the development of this instrument is to deploy it for field measurements and use observations of the irreversibility of the growth factors of atmospheric particles as markers of their physical state.Publication Loading-Dependent Elemental Composition of α-pinene SOA Particles(Copernicus Publications, 2009) Shilling, John E.; Chen, Qi; King, Stephanie M.; Rosenoern, Thomas; Kroll, Jesse H.; Worsnop, Douglas R.; DeCarlo, Peter F.; Aiken, Allison C.; Sueper, Donna; Jimenez, Jose L.; Martin, ScotThe chemical composition of secondary organic aerosol (SOA) particles, formed by the dark ozonolysis of α-pinene, was characterized by a high-resolution time-of-flight aerosol mass spectrometer. The experiments were conducted using a continuous-flow chamber, allowing the particle mass loading and chemical composition to be maintained for several days. The organic portion of the particle mass loading was varied from 0.5 to >140 μg/m3 by adjusting the concentration of reacted α-pinene from 0.9 to 91.1 ppbv. The mass spectra of the organic material changed with loading. For loadings below 5 μg/m3 the unit-mass-resolution m/z 44 (CO2+) signal intensity exceeded that of m/z 43 (predominantly C2H3O+), suggesting more oxygenated organic material at lower loadings. The composition varied more for lower loadings (0.5 to 15 μg/m3) compared to higher loadings (15 to >140 μg/m3). The high-resolution mass spectra showed that from >140 to 0.5 μg/m3 the mass percentage of fragments containing carbon and oxygen (CxHyOz+) monotonically increased from 48% to 54%. Correspondingly, the mass percentage of fragments representing CxHy+ decreased from 52% to 46%, and the atomic oxygen-to-carbon ratio increased from 0.29 to 0.45. The atomic ratios were accurately parameterized by a four-product basis set of decadal volatility (viz. 0.1, 1.0, 10, 100 μg/m3) employing products having empirical formulas of C1H1.32O0.48, C1H1.36O0.39, C1H1.57O0.24, and C1H1.76O0.14. These findings suggest considerable caution is warranted in the extrapolation of laboratory results that were obtained under conditions of relatively high loading (i.e., >15 μg/m3) to modeling applications relevant to the atmosphere, for which loadings of 0.1 to 20 μg/m3 are typical. For the lowest loadings, the particle mass spectra resembled observations reported in the literature for some atmospheric particles.Publication Phase Changes of Ambient Particles in the Southern Great Plains of Oklahoma(American Geophysical Union, 2008) Martin, Scot; Rosenoern, Thomas; Chen, Qi; Collins, Donald R.A new instrument, a 1 × 3 tandem differential mobility analyzer (1 × 3-TDMA), was deployed in June 2007 in the Southern Great Plains, Oklahoma, USA to study the phase of ambient particles. Its primary measurement, the irreversibility of the hygroscopic growth factor, is obtained by reversibly cycling relative humidity (RH) by ±8% and testing for irreversible changes in diameter. In 101 runs, efflorescence occurred 72% of the time for particles sampled at ambient RH. Deliquescence occurred in 13% of the runs. The more frequent occurrence of efflorescence compared to deliquescence was explained at least in part by the distribution of ambient RH, which had a median of 80% and quartiles of 65% and 93% RH. The deliquescence and efflorescence events were nearly exclusive from one another and could be separated by Min[RH Ambient, Inlet RH] <40% for deliquescence and Max[RH Ambient, Inlet RH] >50% for efflorescence. In outlook, the data set from the 1 × 3-TDMA regarding the phase and hence water content of ambient particles can be used for validating regional chemical transport models of particle phase.Publication Interfacial Forces are Modified by the Growth of Surface Nanostructures(American Chemical Society, 2008) Na, Chongzheng; Martin, ScotNanostructures formed by chemical reaction can modify the interfacial forces present in aqueous solution near a surface. This study uses force-volume microscopy to explore this phenomenon for the growth of manganese oxide nanostructures on rhodochrosite. The interfacial forces above the oxide nanostructures are dominated by electrostatic repulsion for probe−surface separations greater than ca. 2 nm but are overtaken by van der Waals attraction for shorter distances. Across the investigated pH range 5.0−9.7, the maximum repulsive force occurs 2.4 (±1.1) nm above the oxide nanostructures. The magnitude of the repulsive force decreases from pH 5.0 to 6.5, reaches its minimum at 6.5, and then increases steadily up to pH 9.7. Specifically, fmax(pN) = 23(±4)[6.8(±2.1) pH] for pH < 6.5 and fmax(pN) = 19(±2)[pH 6.1(±1.0)] for pH ≥ 6.5. This dependence indicates that oxide nanostructures have a point of zero charge in the pH range 6−7. In comparison to the nanostructures, the rhodochrosite substrate induces only small interfacial forces in the same pH range, suggesting a neutral or weakly charged surface. The quantitative mapping of interfacial forces, along with the associated influencing factors such as pH or growth of nanostructures, provides a basis for more sophisticated and accurate modeling of processes affecting contaminant immobilization and bacterial attachment on mineral surfaces under natural conditions.