Person: Bielenberg, Diane
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Bielenberg
First Name
Diane
Name
Bielenberg, Diane
9 results
Search Results
Now showing 1 - 9 of 9
Publication Identification of genes regulating migration and invasion using a new model of metastatic prostate cancer(BioMed Central, 2014) Banyard, Jacqueline; Chung, Ivy; Migliozzi, Matthew; Phan, Derek T; Wilson, Arianne M; Zetter, Bruce; Bielenberg, DianeBackground: Understanding the complex, multistep process of metastasis remains a major challenge in cancer research. Metastasis models can reveal insights in tumor development and progression and provide tools to test new intervention strategies. Methods: To develop a new cancer metastasis model, we used DU145 human prostate cancer cells and performed repeated rounds of orthotopic prostate injection and selection of subsequent lymph node metastases. Tumor growth, metastasis, cell migration and invasion were analyzed. Microarray analysis was used to identify cell migration- and cancer-related genes correlating with metastasis. Selected genes were silenced using siRNA, and their roles in cell migration and invasion were determined in transwell migration and Matrigel invasion assays. Results: Our in vivo cycling strategy created cell lines with dramatically increased tumorigenesis and increased ability to colonize lymph nodes (DU145LN1-LN4). Prostate tumor xenografts displayed increased vascularization, enlarged podoplanin-positive lymphatic vessels and invasive margins. Microarray analysis revealed gene expression profiles that correlated with metastatic potential. Using gene network analysis we selected 3 significantly upregulated cell movement and cancer related genes for further analysis: EPCAM (epithelial cell adhesion molecule), ITGB4 (integrin β4) and PLAU (urokinase-type plasminogen activator (uPA)). These genes all showed increased protein expression in the more metastatic DU145-LN4 cells compared to the parental DU145. SiRNA knockdown of EpCAM, integrin-β4 or uPA all significantly reduced cell migration in DU145-LN4 cells. In contrast, only uPA siRNA inhibited cell invasion into Matrigel. This role of uPA in cell invasion was confirmed using the uPA inhibitors, amiloride and UK122. Conclusions: Our approach has identified genes required for the migration and invasion of metastatic tumor cells, and we propose that our new in vivo model system will be a powerful tool to interrogate the metastatic cascade in prostate cancer.Publication Regulation of epithelial plasticity by miR-424 and miR-200 in a new prostate cancer metastasis model(Nature Publishing Group, 2013) Banyard, Jacqueline; Chung, Ivy; Wilson, Arianne M.; Vetter, Guillaume; Le Béchec, Antony; Bielenberg, Diane; Zetter, BruceUsing an in vivo cycling strategy, we selected metastatic cancer cells from the lymph nodes (LN) of mice bearing orthotopic DU145 human prostate tumors. Repeated rounds of metastatic selection (LN1–LN4) progressively increased the epithelial phenotype, resulting in a new model of tumor cell mesenchymal-epithelial transition (MET). DU145-LN4 showed increased cell-cell adhesions, higher expression of multiple epithelial markers, such as E-cadherin, EpCAM and cytokeratin 18, and reduced expression of mesenchymal markers such as vimentin. The MET in DU145-LN4 cells was accompanied by increased expression of the miR-200 family, and antimiRs to miR-200c and miR-141 induced an EMT. MET also correlated with the loss of miR-424. Ectopic transient and stable miR-424 expression induced EMT, with reduced epithelial marker expression and increased cell scattering. Our model provides evidence for spontaneous MET in vivo. We show that this cellular plasticity can be mediated through the combined action of miR-424 and the miR-200 family.Publication Neuropilin 1 expression correlates with differentiation status of epidermal cells and cutaneous squamous cell carcinomas(2014) Shahrabi-Farahani, Shokoufeh; Wang, Lili; Zwaans, Bernadette M. M.; Santana, Jeans M.; Shimizu, Akio; Takashima, Seiji; Kreuter, Michael; Coultas, Leigh; D'Amore, Patricia; Arbeit, Jeffrey M.; Akslen, Lars A.; Bielenberg, DianeNeuropilins (NRP) are cell surface receptors for VEGF and SEMA3 family members. The role of NRP in neurons and endothelial cells has been investigated, but the expression and role of NRP in epithelial cells is much less clear. Herein, the expression and localization of neuropilin 1 (NRP1) was investigated in human and mouse skin and squamous cell carcinomas (SCC). Results indicated that NRP1 mRNA and protein was expressed in the suprabasal epithelial layers of skin sections. NRP1 staining did not overlap with that of keratin 14 (K14) or proliferating cell nuclear antigen, but did colocalize with staining for keratin 1, indicating that differentiated keratinocytes express NRP1. Similar to the expression of NRP1, VEGF-A was expressed in suprabasal epithelial cells, whereas Nrp2 and VEGFR2 were not detectable in the epidermis. The expression of NRP1 correlated with a high degree of differentiation in human SCC specimens, human SCC xenografts, and mouse K14-HPV16 transgenic SCC. UVB irradiation of mouse skin induced Nrp1 upregulation. In vitro, Nrp1 was upregulated in primary keratinocytes in response to differentiating media or EGF-family growth factors. In conclusion, the expression of NRP1 is regulated in the skin and is selectively produced in differentiated epithelial cells. NRP1 may function as a reservoir to sequester VEGF ligand within the epithelial compartment, thereby modulating its bioactivity.Publication Regulation of soluble neuropilin 1, an endogenous angiogenesis inhibitor, in liver development and regeneration(Elsevier BV, 2014) Panigrahy, Dipak; Adini, Irit; Mamluk, Roni; Levonyak, Nicholas; Bruns, Christiane J.; D'Amore, Patricia; Klagsbrun, Michael; Bielenberg, DianeNeuropilin-1 (NRP1) is a receptor for vascular endothelial growth factor (VEGF). A soluble isoform of Nrp1 (sNrp1) has not been described in the mouse. Our goal was to examine the expression of mouse sNrp1 during liver development and regeneration. sNrp1 was cloned from mouse liver. The expression of sNrp1 and VEGF was examined in mouse liver during postnatal development and regeneration using northern blot, western blot, in situ hybridization, and immunohistochemical analyses. HGF/NRP1 binding was examined in vitro. A novel 588-amino acid sNrp1 isoform was found to contain the ligand binding regions of Nrp1. The adult liver expressed more sNrp1 than full-length Nrp1. In vivo, hepatocytes constitutively expressed VEGF and sNrp1 in the quiescent state. sNrp1 was highly upregulated at P20, a time point coinciding with a plateau in liver and body weights. Following hepatectomy, endogenous levels of sNrp1 decreased during the rapid growth phase; and VEGF levels were highest just prior to and during the angiogenic phase. sNrp1 levels again rose 5-10 days post-hepatectomy, presumably to control regeneration. HGF protein bound NRP1 and binding was competed with sNRP1. We cloned a novel mouse sNrp1 isoform from liver and provide evidence that this endogenous angiogenesis inhibitor may regulate VEGF or HGF bioavailability during normal physiological growth and development as well as during liver regeneration.Publication Epoxyeicosanoids Promote Organ and Tissue Regeneration(National Academy of Sciences, 2013-07-29) Panigrahy, Dipak; Kalish, Brian T.; Huang, Sui; Bielenberg, Diane; Le, Hau D.; Yang, Jun; Edin, Matthew L.; Lee, Craig R.; Benny, Ofra; Mudge, Dayna K.; Butterfield, Catherine E.; Mammoto, Akiko; Mammoto, Tadanori; Inceoglu, Bora; Jenkins, Roger L.; Simpson, Mary A.; Akino, Tomoshige; Lih, Fred B.; Tomer, Kenneth B.; Ingber, Donald; Hammock, Bruce D.; Falck, John R.; Manthati, Vijaya L.; Kaipainen, Arja; D'Amore, Patricia; Puder, Mark; Zeldin, Darryl C.; Kieran, Mark W.Epoxyeicosatrienoic acids (EETs), lipid mediators produced by cytochrome P450 epoxygenases, regulate inflammation, angiogenesis, and vascular tone. Despite pleiotropic effects on cells, the role of these epoxyeicosanoids in normal organ and tissue regeneration remains unknown. EETs are produced predominantly in the endothelium. Normal organ and tissue regeneration require an active paracrine role of the microvascular endothelium, which in turn depends on angiogenic growth factors. Thus, we hypothesize that endothelial cells stimulate organ and tissue regeneration via production of bioactive EETs. To determine whether endothelial-derived EETs affect physiologic tissue growth in vivo, we used genetic and pharmacological tools to manipulate endogenous EET levels. We show that endothelial-derived EETs play a critical role in accelerating tissue growth in vivo, including liver regeneration, kidney compensatory growth, lung compensatory growth, wound healing, corneal neovascularization, and retinal vascularization. Administration of synthetic EETs recapitulated these results, whereas lowering EET levels, either genetically or pharmacologically, delayed tissue regeneration, demonstrating that pharmacological modulation of EETs can affect normal organ and tissue growth. We also show that soluble epoxide hydrolase inhibitors, which elevate endogenous EET levels, promote liver and lung regeneration. Thus, our observations indicate a central role for EETs in organ and tissue regeneration and their contribution to tissue homeostasis.Publication Epoxyeicosanoids stimulate multiorgan metastasis and tumor dormancy escape in mice(American Society for Clinical Investigation, 2012) Panigrahy, Dipak; Edin, Matthew L.; Lee, Craig R.; Huang, Sui; Bielenberg, Diane; Butterfield, Catherine E.; Barnés, Carmen M.; Mammoto, Akiko; Mammoto, Tadanori; Luria, Ayala; Benny, Ofra; Chaponis, Deviney M.; Dudley, Andrew C.; Greene, Emily R.; Vergilio, Jo-Anne; Pietramaggiori, Giorgio; Scherer-Pietramaggiori, Sandra S.; Short, Sarah M.; Seth, Meetu; Lih, Fred B.; Tomer, Kenneth B.; Yang, Jun; Schwendener, Reto A.; Hammock, Bruce D.; Falck, John R.; Manthati, Vijaya L.; Ingber, Donald; Kaipainen, Arja; D'Amore, Patricia; Kieran, Mark W.; Zeldin, Darryl C.Epoxyeicosatrienoic acids (EETs) are small molecules produced by cytochrome P450 epoxygenases. They are lipid mediators that act as autocrine or paracrine factors to regulate inflammation and vascular tone. As a result, drugs that raise EET levels are in clinical trials for the treatment of hypertension and many other diseases. However, despite their pleiotropic effects on cells, little is known about the role of these epoxyeicosanoids in cancer. Here, using genetic and pharmacological manipulation of endogenous EET levels, we demonstrate that EETs are critical for primary tumor growth and metastasis in a variety of mouse models of cancer. Remarkably, we found that EETs stimulated extensive multiorgan metastasis and escape from tumor dormancy in several tumor models. This systemic metastasis was not caused by excessive primary tumor growth but depended on endothelium-derived EETs at the site of metastasis. Administration of synthetic EETs recapitulated these results, while EET antagonists suppressed tumor growth and metastasis, demonstrating in vivo that pharmacological modulation of EETs can affect cancer growth. Furthermore, inhibitors of soluble epoxide hydrolase (sEH), the enzyme that metabolizes EETs, elevated endogenous EET levels and promoted primary tumor growth and metastasis. Thus, our data indicate a central role for EETs in tumorigenesis, offering a mechanistic link between lipid signaling and cancer and emphasizing the critical importance of considering possible effects of EET-modulating drugs on cancer.Publication DIAPH3 Governs the Cellular Transition to the Amoeboid Tumour Phenotype(WILEY-VCH Verlag, 2012) Hager, Martin H; Morley, Samantha; Bielenberg, Diane; Gao, Sizhen; Morello, Matteo; Holcomb, Ilona N; Liu, Wennuan; Mouneimne, Ghassan; Demichelis, Francesca; Kim, Jayoung; Solomon, Keith R.; Adam, Rosalyn; Isaacs, William B; Higgs, Henry N; Vessella, Robert L; Di Vizio, Dolores; Freeman, Michael R.Therapies for most malignancies are generally ineffective once metastasis occurs. While tumour cells migrate through tissues using diverse strategies, the signalling networks controlling such behaviours in human tumours are poorly understood. Here we define a role for the Diaphanous-related formin-3 (DIAPH3) as a non-canonical regulator of metastasis that restrains conversion to amoeboid cell behaviour in multiple cancer types. The DIAPH3 locus is close to RB1, within a narrow consensus region of deletion on chromosome 13q in prostate, breast and hepatocellular carcinomas. DIAPH3 silencing in human carcinoma cells destabilized microtubules and induced defective endocytic trafficking, endosomal accumulation of EGFR, and hyperactivation of EGFR/MEK/ERK signalling. Silencing also evoked amoeboid properties, increased invasion and promoted metastasis in mice. In human tumours, DIAPH3 down-regulation was associated with aggressive or metastatic disease. DIAPH3-silenced cells were sensitive to MEK inhibition, but showed reduced sensitivity to EGFR inhibition. These findings have implications for understanding mechanisms of metastasis, and suggest that identifying patients with chromosomal deletions at DIAPH3 may have prognostic value.Publication Vitamin D Binding Protein-Macrophage Activating Factor Directly Inhibits Proliferation, Migration, and uPAR Expression of Prostate Cancer Cells(Public Library of Science, 2010) Gregory, Kalvin J.; Zhao, Bing; Bielenberg, Diane; Dridi, Sami; Wu, Jason; Jiang, Weihua; Huang, Bin; Pirie-Shepherd, Steven; Fannon, MichaelBackground: Vitamin D binding protein-macrophage activating factor (DBP-maf) is a potent inhibitor of tumor growth. Its activity, however, has been attributed to indirect mechanisms such as boosting the immune response by activating macrophages and inhibiting the blood vessel growth necessary for the growth of tumors. Methods and Findings: In this study we show for the first time that DBP-maf exhibits a direct and potent effect on prostate tumor cells in the absence of macrophages. DBP-maf demonstrated inhibitory activity in proliferation studies of both LNCaP and PC3 prostate cancer cell lines as well as metastatic clones of these cells. Flow cytometry studies with annexin V and propidium iodide showed that this inhibitory activity is not due to apoptosis or cell death. DBP-maf also had the ability to inhibit migration of prostate cancer cells in vitro. Finally, DBP-maf was shown to cause a reduction in urokinase plasminogen activator receptor (uPAR) expression in prostate tumor cells. There is evidence that activation of this receptor correlates with tumor metastasis. Conclusions: These studies show strong inhibitory activity of DBP-maf on prostate tumor cells independent of its macrophage activation.Publication PPAR\(\alpha\) Deficiency in Inflammatory Cells Suppresses Tumor Growth(Public Library of Science, 2007) Kaipainen, Arja; Kieran, Mark W.; Huang, Sui; Butterfield, Catherine; Bielenberg, Diane; Mostoslavsky, Gustavo; Mulligan, Richard; Folkman, Judah; Panigrahy, DipakInflammation in the tumor bed can either promote or inhibit tumor growth. Peroxisome proliferator-activated receptor (PPAR)\(\alpha\) is a central transcriptional suppressor of inflammation, and may therefore modulate tumor growth. Here we show that PPAR\(\alpha\) deficiency in the host leads to overt inflammation that suppresses angiogenesis via excess production of the endogenous angiogenesis inhibitor thrombospondin-1 and prevents tumor growth. Bone marrow transplantation and granulocyte depletion show that PPAR\(\alpha\) expressing granulocytes are necessary for tumor growth. Neutralization of thrombospondin-1 restores tumor growth in PPAR\(\alpha\)-deficient mice. These findings suggest that the absence of PPAR\(\alpha\) activity renders inflammatory infiltrates tumor suppressive and, thus, may provide a target for inhibiting tumor growth by modulating stromal processes, such as angiogenesis.