Person:
Zabolotny, Janice M.

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Zabolotny

First Name

Janice M.

Name

Zabolotny, Janice M.

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Publication
    A new paradigm for transcription factor TFIIB functionality
    (Nature Publishing Group, 2014) Gelev, Vladimir; Zabolotny, Janice M.; Lange, Martin; Hiromura, Makoto; Yoo, Sang Wook; Orlando, Joseph S.; Kushnir, Anna; Horikoshi, Nobuo; Paquet, Eric; Bachvarov, Dimcho; Schaffer, Priscilla A.; Usheva, Anny
    Experimental and bioinformatic studies of transcription initiation by RNA polymerase II (RNAP2) have revealed a mechanism of RNAP2 transcription initiation less uniform across gene promoters than initially thought. However, the general transcription factor TFIIB is presumed to be universally required for RNAP2 transcription initiation. Based on bioinformatic analysis of data and effects of TFIIB knockdown in primary and transformed cell lines on cellular functionality and global gene expression, we report that TFIIB is dispensable for transcription of many human promoters, but is essential for herpes simplex virus-1 (HSV-1) gene transcription and replication. We report a novel cell cycle TFIIB regulation and localization of the acetylated TFIIB variant on the transcriptionally silent mitotic chromatids. Taken together, these results establish a new paradigm for TFIIB functionality in human gene expression, which when downregulated has potent anti-viral effects.
  • Thumbnail Image
    Publication
    Rho-kinase Regulates Energy Balance by Targeting Hypothalamic Leptin Receptor Signaling
    (2012) Huang, Hu; Kong, Dong; Byun, Kyung Hee; Ye, Chianping; Koda, Shuichi; Lee, Dae Ho; Oh, Byung-Chul; Lee, Sam; Lee, Bonghee; Zabolotny, Janice M.; Kim, Min Seon; Bjørbæk, Christian; Lowell, Bradford; Kim, Young-Bum
    Leptin regulates energy balance. However, knowledge of the critical intracellular transducers of leptin signaling remains incomplete. Here we report that Rho-kinase 1 (ROCK1) regulates leptin action on body weight homeostasis by activating JAK2, an initial trigger of leptin receptor signaling. Leptin promotes the physical interaction of JAK2 and ROCK1, thereby increasing phosphorylation of JAK2 and downstream activation of Stat3 and FOXO1. Mice lacking ROCK1 in either POMC or AgRP neurons, mediators of leptin action, display obesity and impaired leptin sensitivity. In addition, deletion of ROCK1 in the arcuate nucleus markedly enhances food intake, resulting in severe obesity. Of note, ROCK1 is a specific mediator of leptin, but not insulin, regulation of POMC neuronal activity. Our data identify ROCK1 as a key regulator of leptin action on energy homeostasis.
  • Thumbnail Image
    Publication
    Specificity and Heterogeneity of Terahertz Radiation Effect on Gene Expression in Mouse Mesenchymal Stem Cells
    (Nature Publishing Group, 2013) Alexandrov, Boian S.; Phipps, M. Lisa; Alexandrov, Ludmil B.; Booshehri, Layla G.; Erat, Anna; Zabolotny, Janice M.; Mielke, Charles H.; Chen, Hou-Tong; Rodriguez, George; Rasmussen, Kim Ø.; Martinez, Jennifer S.; Bishop, Alan R.; Usheva, Anny
    We report that terahertz (THz) irradiation of mouse mesenchymal stem cells (mMSCs) with a single-frequency (SF) 2.52 THz laser or pulsed broadband (centered at 10 THz) source results in irradiation specific heterogenic changes in gene expression. The THz effect depends on irradiation parameters such as the duration and type of THz source, and on the degree of stem cell differentiation. Our microarray survey and RT-PCR experiments demonstrate that prolonged broadband THz irradiation drives mMSCs toward differentiation, while 2-hour irradiation (regardless of THz sources) affects genes transcriptionally active in pluripotent stem cells. The strictly controlled experimental environment indicates minimal temperature changes and the absence of any discernable response to heat shock and cellular stress genes imply a non-thermal response. Computer simulations of the core promoters of two pluripotency markers reveal association between gene upregulation and propensity for DNA breathing. We propose that THz radiation has potential for non-contact control of cellular gene expression.