Person:
Hart, Jaime

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Hart

First Name

Jaime

Name

Hart, Jaime

Search Results

Now showing 1 - 10 of 41
  • Thumbnail Image
    Publication
    Spatial clustering of physical activity and obesity in relation to built environment factors among older women in three U.S. states
    (BioMed Central, 2014) Tamura, Kosuke; Puett, Robin C; Hart, Jaime; Starnes, Heather A; Laden, Francine; Troped, Philip J
    Background: Identifying spatial clusters of chronic diseases has been conducted over the past several decades. More recently these approaches have been applied to physical activity and obesity. However, few studies have investigated built environment characteristics in relation to these spatial clusters. This study’s aims were to detect spatial clusters of physical activity and obesity, examine whether the geographic distribution of covariates affects clusters, and compare built environment characteristics inside and outside clusters. Methods: In 2004, Nurses’ Health Study participants from California, Massachusetts, and Pennsylvania completed survey items on physical activity (N = 22,599) and weight-status (N = 19,448). The spatial scan statistic was utilized to detect spatial clustering of higher and lower likelihood of obesity and meeting physical activity recommendations via walking. Clustering analyses and tests that adjusted for socio-demographic and health-related variables were conducted. Neighborhood built environment characteristics for participants inside and outside spatial clusters were compared. Results: Seven clusters of physical activity were identified in California and Massachusetts. Two clusters of obesity were identified in Pennsylvania. Overall, adjusting for socio-demographic and health-related covariates had little effect on the size or location of clusters in the three states with a few exceptions. For instance, adjusting for husband’s education fully accounted for physical activity clusters in California. In California and Massachusetts, population density, intersection density, and diversity and density of facilities in two higher physical activity clusters were significantly greater than in neighborhoods outside of clusters. In contrast, in two other higher physical activity clusters in California and Massachusetts, population density, diversity of facilities, and density of facilities were significantly lower than in areas outside of clusters. In Pennsylvania, population density, intersection density, diversity of facilities, and certain types of facility density inside obesity clusters were significantly lower compared to areas outside the clusters. Conclusions: Spatial clustering techniques can identify high and low risk areas for physical activity and obesity. Although covariates significantly differed inside and outside the clusters, patterns of differences were mostly inconsistent. The findings from these spatial analyses could eventually facilitate the design and implementation of more resource-efficient, geographically targeted interventions for both physical activity and obesity.
  • Thumbnail Image
    Publication
    Autism Spectrum Disorder and Particulate Matter Air Pollution before, during, and after Pregnancy: A Nested Case–Control Analysis within the Nurses’ Health Study II Cohort
    (NLM-Export, 2014) Raz, Raanan; Roberts, Andrea L.; Lyall, Kristen; Hart, Jaime; Just, Allan C.; Laden, Francine; Weisskopf, Marc
    Background: Autism spectrum disorder (ASD) is a developmental disorder with increasing prevalence worldwide, yet has unclear etiology. Objective: We explored the association between maternal exposure to particulate matter (PM) air pollution and odds of ASD in her child. Methods: We conducted a nested case–control study of participants in the Nurses’ Health Study II (NHS II), a prospective cohort of 116,430 U.S. female nurses recruited in 1989, followed by biennial mailed questionnaires. Subjects were NHS II participants’ children born 1990–2002 with ASD (n = 245), and children without ASD (n = 1,522) randomly selected using frequency matching for birth years. Diagnosis of ASD was based on maternal report, which was validated against the Autism Diagnostic Interview-Revised in a subset. Monthly averages of PM with diameters ≤ 2.5 μm (PM2.5) and 2.5–10 μm (PM10–2.5) were predicted from a spatiotemporal model for the continental United States and linked to residential addresses. Results: PM2.5 exposure during pregnancy was associated with increased odds of ASD, with an adjusted odds ratio (OR) for ASD per interquartile range (IQR) higher PM2.5 (4.42 μg/m3) of 1.57 (95% CI: 1.22, 2.03) among women with the same address before and after pregnancy (160 cases, 986 controls). Associations with PM2.5 exposure 9 months before or after the pregnancy were weaker in independent models and null when all three time periods were included, whereas the association with the 9 months of pregnancy remained (OR = 1.63; 95% CI: 1.08, 2.47). The association between ASD and PM2.5 was stronger for exposure during the third trimester (OR = 1.42 per IQR increase in PM2.5; 95% CI: 1.09, 1.86) than during the first two trimesters (ORs = 1.06 and 1.00) when mutually adjusted. There was little association between PM10–2.5 and ASD. Conclusions: Higher maternal exposure to PM2.5 during pregnancy, particularly the third trimester, was associated with greater odds of a child having ASD. Citation Raz R, Roberts AL, Lyall K, Hart JE, Just AC, Laden F, Weisskopf MG. 2015. Autism spectrum disorder and particulate matter air pollution before, during, and after pregnancy: a nested case–control analysis within the Nurses’ Health Study II cohort. Environ Health Perspect 123:264–270; http://dx.doi.org/10.1289/ehp.1408133
  • Thumbnail Image
    Publication
    The relation between past exposure to fine particulate air pollution and prevalent anxiety: observational cohort study
    (BMJ Publishing Group Ltd., 2015) Power, Melinda C; Kioumourtzoglou, Marianthi-Anna; Hart, Jaime; Okereke, Olivia; Laden, Francine; Weisskopf, Marc
    Objective: To determine whether higher past exposure to particulate air pollution is associated with prevalent high symptoms of anxiety. Design: Observational cohort study. Setting: Nurses’ Health Study. Participants: 71 271 women enrolled in the Nurses’ Health Study residing throughout the contiguous United States who had valid estimates on exposure to particulate matter for at least one exposure period of interest and data on anxiety symptoms. Main outcome measures Meaningfully high symptoms of anxiety, defined as a score of 6 points or greater on the phobic anxiety subscale of the Crown-Crisp index, administered in 2004. Results: The 71 271 eligible women were aged between 57 and 85 years (mean 70 years) at the time of assessment of anxiety symptoms, with a prevalence of high anxiety symptoms of 15%. Exposure to particulate matter was characterized using estimated average exposure to particulate matter <2.5 μm in diameter (PM2.5) and 2.5 to 10 μm in diameter (PM2.5-10) in the one month, three months, six months, one year, and 15 years prior to assessment of anxiety symptoms, and residential distance to the nearest major road two years prior to assessment. Significantly increased odds of high anxiety symptoms were observed with higher exposure to PM2.5 for multiple averaging periods (for example, odds ratio per 10 µg/m3 increase in prior one month average PM2.5: 1.12, 95% confidence interval 1.06 to 1.19; in prior 12 month average PM2.5: 1.15, 1.06 to 1.26). Models including multiple exposure windows suggested short term averaging periods were more relevant than long term averaging periods. There was no association between anxiety and exposure to PM2.5-10. Residential proximity to major roads was not related to anxiety symptoms in a dose dependent manner. Conclusions: Exposure to fine particulate matter (PM2.5) was associated with high symptoms of anxiety, with more recent exposures potentially more relevant than more distant exposures. Research evaluating whether reductions in exposure to ambient PM2.5 would reduce the population level burden of clinically relevant symptoms of anxiety is warranted.
  • Thumbnail Image
    Publication
    Longitudinal associations of long-term exposure to ultrafine particles with blood pressure and systemic inflammation in Puerto Rican adults
    (BioMed Central, 2018) Corlin, Laura; Woodin, Mark; Hart, Jaime; Simon, Matthew C.; Gute, David M.; Stowell, Joanna; Tucker, Katherine L.; Durant, John L.; Brugge, Doug
    Background: Few longitudinal studies have examined the association between ultrafine particulate matter (UFP, particles < 0.1 μm aerodynamic diameter) exposure and cardiovascular disease (CVD) risk factors. We used data from 791 adults participating in the longitudinal Boston Puerto Rican Health Study (Massachusetts, USA) between 2004 and 2015 to assess whether UFP exposure was associated with blood pressure and high sensitivity C-reactive protein (hsCRP, a biomarker of systemic inflammation). Methods: Residential annual average UFP exposure (measured as particle number concentration, PNC) was assigned using a model accounting for spatial and temporal trends. We also adjusted PNC values for participants’ inhalation rate to obtain the particle inhalation rate (PIR) as a secondary exposure measure. Multilevel linear models with a random intercept for each participant were used to examine the association of UFP with blood pressure and hsCRP. Results: Overall, in adjusted models, an inter-quartile range increase in PNC was associated with increased hsCRP (β = 6.8; 95% CI = − 0.3, 14.0%) but not with increased systolic blood pressure (β = 0.96; 95% CI = − 0.33, 2.25 mmHg), pulse pressure (β = 0.70; 95% CI = − 0.27, 1.67 mmHg), or diastolic blood pressure (β = 0.55; 95% CI = − 0.20, 1.30 mmHg). There were generally stronger positive associations among women and never smokers. Among men, there were inverse associations of PNC with systolic blood pressure and pulse pressure. In contrast to the primary findings, an inter-quartile range increase in the PIR was positively associated with systolic blood pressure (β = 1.03; 95% CI = 0.00, 2.06 mmHg) and diastolic blood pressure (β = 1.01; 95% CI = 0.36, 1.66 mmHg), but not with pulse pressure or hsCRP. Conclusions: We observed that exposure to PNC was associated with increases in measures of CVD risk markers, especially among certain sub-populations. The exploratory PIR exposure metric should be further developed. Electronic supplementary material The online version of this article (10.1186/s12940-018-0379-9) contains supplementary material, which is available to authorized users.
  • Thumbnail Image
    Publication
    Environmental radon exposure and breast cancer risk in the Nurses’ Health Study II
    (BioMed Central, 2017) VoPham, Trang; DuPré, Natalie; Tamimi, Rulla; James, Peter; Bertrand, Kimberly A.; Vieira, Veronica; Laden, Francine; Hart, Jaime
    Background: Radon and its decay products, a source of ionizing radiation, are primarily inhaled and can deliver a radiation dose to breast tissue, where they may continue to decay and emit DNA damage-inducing particles. Few studies have examined the relationship between radon and breast cancer. Methods: The Nurses’ Health Study II (NHSII) includes U.S. female registered nurses who completed biennial questionnaires since 1989. Self-reported breast cancer was confirmed from medical records. County-level radon exposures were linked with geocoded residential addresses updated throughout follow-up. Time-varying Cox regression models adjusted for established breast cancer risk factors were used to calculate hazard ratios (HRs) and 95% confidence intervals (CIs). Results: From 1989 to 2013, 3966 invasive breast cancer cases occurred among 112,639 participants. Increasing radon exposure was not associated with breast cancer risk overall (adjusted HR comparing highest to lowest quintile = 1.06, 95% CI: 0.94, 1.21, p for trend = 0.30). However, women in the highest quintile of exposure (≥74.9 Bq/m3) had a suggested elevated risk of ER−/PR- breast cancer compared to women in the lowest quintile (<27.0 Bq/m3) (adjusted HR = 1.38, 95% CI: 0.97, 1.96, p for trend = 0.05). No association was observed for ER+/PR+ breast cancer. Conclusions: Although we did not find an association between radon exposure and risk of overall or ER+/PR+ breast cancer, we observed a suggestive association with risk of ER−/PR- breast cancer. Electronic supplementary material The online version of this article (10.1186/s12940-017-0305-6) contains supplementary material, which is available to authorized users.
  • Thumbnail Image
    Publication
    Clinical Factors Associated with C - Reactive Protein in Chronic Spinal Cord Injury
    (2017) Goldstein, Rebekah; Walia, Palak; Teylan, Merilee; Lazzari, Antonio A.; Tun, Carlos G.; Hart, Jaime; Garshick, Eric
    Study Design Cross-sectional study. Objectives: Determine clinical factors associated with plasma C-reactive protein (CRP) in persons with chronic spinal cord injury (SCI). Setting: Veterans Affairs Medical Center in Boston, MA. Methods: Participants provided a blood sample, completed a respiratory health questionnaire, and underwent dual x-ray absorptiometry (DXA) to assess total and regional body fat. Linear regression models were used to assess cross-sectional associations with plasma CRP. Results: In multivariable models, factors associated with a higher CRP included a greater BMI, urinary catheter use, a respiratory illness in the past week, and non-white race. Mean CRP also increased with decreasing mobility (motorized wheel chair >hand propelled wheel chair > walk with an assistive device > walk independently). Results were similar when adjusting for % android, gynoid, trunk, or total fat mass in place of BMI. Level and completeness of SCI was not associated with CRP in multivariable models. Conclusions: Clinical characteristics common in chronic SCI are associated with plasma CRP. These factors are more important than level and completeness of SCI and some are potentially modifiable.
  • Thumbnail Image
    Publication
    FEV1 and FVC and systemic inflammation in a spinal cord injury cohort
    (BioMed Central, 2017) Hart, Jaime; Goldstein, Rebekah; Walia, Palak; Teylan, Merilee; Lazzari, Antonio; Tun, Carlos G.; Garshick, Eric
    Background: Systemic inflammation has been associated with reduced pulmonary function in individuals with and without chronic medical conditions. Individuals with chronic spinal cord injury (SCI) have clinical characteristics that promote systemic inflammation and also have reduced pulmonary function. We sought to assess the associations between biomarkers of systemic inflammation with pulmonary function in a chronic SCI cohort, adjusting for other potential confounding factors. Methods: Participants (n = 311) provided a blood sample, completed a respiratory health questionnaire, and underwent spirometry. Linear regression methods were used to assess cross-sectional associations between plasma C-reactive protein (CRP) and interleukin-6 (IL-6) with forced expiratory volume in one second (FEV1), forced vital capacity (FVC), and FEV1/FVC. Results: There were statistically significant inverse relationships between plasma CRP and IL-6 assessed in quartiles or continuously with FEV1 and FVC. In fully adjusted models, each interquartile range (5.91 mg/L) increase in CRP was associated with a significant decrease in FEV1 (−55.85 ml; 95% CI: -89.21, −22.49) and decrease in FVC (−65.50 ml; 95% CI: -106.61, −24.60). There were similar significant findings for IL-6. There were no statistically significant associations observed with FEV1/FVC. Conclusion: Plasma CRP and IL-6 in individuals with chronic SCI are inversely associated with FEV1 and FVC, independent of SCI level and severity of injury, BMI, and other covariates. This finding suggests that systemic inflammation associated with chronic SCI may contribute to reduced pulmonary function. Electronic supplementary material The online version of this article (doi:10.1186/s12890-017-0459-6) contains supplementary material, which is available to authorized users.
  • Thumbnail Image
    Publication
    Residential particulate matter and distance to roadways in relation to mammographic density: results from the Nurses’ Health Studies
    (BioMed Central, 2017) DuPre, Natalie; Hart, Jaime; Bertrand, Kimberly A.; Kraft, Phillip; Laden, Francine; Tamimi, Rulla
    Background: High mammographic density is a strong, well-established breast cancer risk factor. Three studies conducted in various smaller geographic settings reported inconsistent findings between air pollution and mammographic density. We assessed whether particulate matter (PM) exposures (PM2.5, PM2.5–10, and PM10) and distance to roadways were associated with mammographic density among women residing across the United States. Methods: The Nurses’ Health Studies are prospective cohorts for whom a subset has screening mammograms from the 1990s (interquartile range 1990–1999). PM was estimated using spatio-temporal models linked to residential addresses. Among 3258 women (average age at mammogram 52.7 years), we performed multivariable linear regression to assess associations between square-root-transformed mammographic density and PM within 1 and 3 years before the mammogram. For linear regression estimates of PM in relation to untransformed mammographic density outcomes, bootstrapped robust standard errors are used to calculate 95% confidence intervals (CIs). Analyses were stratified by menopausal status and region of residence. Results: Recent PM and distance to roadways were not associated with mammographic density in premenopausal women (PM2.5 within 3 years before mammogram β = 0.05, 95% CI –0.16, 0.27; PM2.5–10 β = 0, 95%, CI –0.15, 0.16; PM10 β = 0.02, 95% CI –0.10, 0.13) and postmenopausal women (PM2.5 within 3 years before mammogram β = –0.05, 95% CI –0.27, 0.17; PM2.5–10 β = –0.01, 95% CI –0.16, 0.14; PM10 β = –0.02, 95% CI –0.13, 0.09). Largely null associations were observed within regions. Suggestive associations were observed among postmenopausal women in the Northeast (n = 745), where a 10-μg/m3 increase in PM2.5 within 3 years before the mammogram was associated with 3.4 percentage points higher percent mammographic density (95% CI –0.5, 7.3). Conclusions: These findings do not support that recent PM or roadway exposures influence mammographic density. Although PM was largely not associated with mammographic density, we cannot rule out the role of PM during earlier exposure time windows and possible associations among northeastern postmenopausal women. Electronic supplementary material The online version of this article (doi:10.1186/s13058-017-0915-5) contains supplementary material, which is available to authorized users.
  • Thumbnail Image
    Publication
    Perinatal Air Pollutant Exposures and Autism Spectrum Disorder in the Children of Nurses’ Health Study II Participants
    (National Institute of Environmental Health Sciences, 2013) Roberts, Andrea L.; Lyall, Kristen; Hart, Jaime; Laden, Francine; Just, Allan C.; Bobb, Jennifer; Koenen, Karestan C.; Ascherio, Alberto; Weisskopf, Marc G.
    Objective: Air pollution contains many toxicants known to affect neurological function and to have effects on the fetus in utero. Recent studies have reported associations between perinatal exposure to air pollutants and autism spectrum disorder (ASD) in children. We tested the hypothesis that perinatal exposure to air pollutants is associated with ASD, focusing on pollutants associated with ASD in prior studies. Methods: We estimated associations between U.S. Environmental Protection Agency–modeled levels of hazardous air pollutants at the time and place of birth and ASD in the children of participants in the Nurses’ Health Study II (325 cases, 22,101 controls). Our analyses focused on pollutants associated with ASD in prior research. We accounted for possible confounding and ascertainment bias by adjusting for family-level socioeconomic status (maternal grandparents’ education) and census tract–level socioeconomic measures (e.g., tract median income and percent college educated), as well as maternal age at birth and year of birth. We also examined possible differences in the relationship between ASD and pollutant exposures by child’s sex. Results: Perinatal exposures to the highest versus lowest quintile of diesel, lead, manganese, mercury, methylene chloride, and an overall measure of metals were significantly associated with ASD, with odds ratios ranging from 1.5 (for overall metals measure) to 2.0 (for diesel and mercury). In addition, linear trends were positive and statistically significant for these exposures (p < .05 for each). For most pollutants, associations were stronger for boys (279 cases) than for girls (46 cases) and significantly different according to sex. Conclusions: Perinatal exposure to air pollutants may increase risk for ASD. Additionally, future studies should consider sex-specific biological pathways connecting perinatal exposure to pollutants with ASD.
  • Thumbnail Image
    Publication
    Traffic-related exposures and biomarkers of systemic inflammation, endothelial activation and oxidative stress: a panel study in the US trucking industry
    (BioMed Central, 2013) Neophytou, Andreas M; Hart, Jaime; Cavallari, Jennifer M; Smith, Thomas; Dockery, Douglas; Coull, Brent; Garshick, Eric; Laden, Francine
    Background: Experimental evidence suggests that inhaled particles from vehicle exhaust have systemic effects on inflammation, endothelial activation and oxidative stress. In the present study we assess the relationships of short-term exposures with inflammatory endothelial activation and oxidative stress biomarker levels in a population of trucking industry workers. Methods: Blood and urine samples were collected pre and post-shift, at the beginning and end of a workweek from 67 male non-smoking US trucking industry workers. Concurrent measurements of microenvironment concentrations of elemental and organic carbon (EC & OC), and fine particulate matter (PM2.5) combined with time activity patterns allowed for calculation of individual exposures. Associations between daily and first and last-day average levels of exposures and repeated measures of intercellular and vascular cell adhesion molecule-1 (ICAM-1 & VCAM-1), interleukin 6 (IL-6) and C-reactive protein (CRP) blood levels and urinary 8-Hydroxy-2′-Deoxyguanosine (8-OHdG) were assessed using linear mixed effects models for repeated measures. Results: There was a statistically significant association between first and last-day average PM2.5 and 8-OHdG (21% increase, 95% CI: 2, 42%) and first and last-day average OC and IL-6 levels (18% increase 95% CI: 1, 37%) per IQR in exposure. There were no significant findings associated with EC or associations suggesting acute cross-shift effects. Conclusion: Our findings suggest associations between weekly average exposures of PM2.5 on markers of oxidative stress and OC on IL-6 levels.