Person: Liu, Bin
Loading...
Email Address
AA Acceptance Date
Birth Date
2 results
Search Results
Now showing 1 - 2 of 2
Publication The Application of Optical Coherence Tomography in Musculoskeletal Disease(Hindawi Publishing Corporation, 2013) Rashidifard, Christopher; Vercollone, Christopher; Martin, Scott; Liu, Bin; Brezinski, Mark EdwardMany musculoskeletal disorders (MDs) are associated with irreversible bone and cartilage damage; this is particularly true for osteoarthritis (OA). Therefore, a clinical need exists for modalities which can detect OA and other MDs at early stages. Optical coherence tomography (OCT) is an infrared-based imaging, currently FDA approved in cardiology and ophthalmology, which has a resolution greater than 10 microns and acquisition rate of 120 frames/second. It has shown feasibility for imaging early OA, identifying changes prior to cartilage thinning both in vitro and in vivo in patients and in OA animal models. In addition, OCT has shown an ability to identify early rheumatoid arthritis (RA) and guide tendon repair, but has the potential for an even greater impact. Clinical trials in OA are currently underway, as well as in several other MDs.Publication Towards Improved Collagen Assessment: Polarization-Sensitive Optical Coherence Tomography with Tailored Reference Arm Polarization(Hindawi Publishing Corporation, 2012) Liu, Bin; Vercollone, Christopher; Brezinski, Mark EdwardSingle channel PS-OCT has advantages for assessing birefringent tissue components in various clinical scenarios, with implications for assessing pathology, ranging from osteoarthritis to myocardial infarction. While the technique has been successfully used both in vitro and in vivo, there have been limited attempts to optimize single channel PS-OCT with respect to performance, particularly paddle rotation. In this study, we developed and tested a new approach for the real-time assessment of birefringence through tailoring of reference arm polarization. Different polarization rotation patterns, as depicted on a Poincare sphere, were assessed with polarization filters and retarders. When further tested in tissue, PS-OCT assessments of bovine cartilage and tendon demonstrated that contrast was sensitive to the pattern selected, indicating that rotation pattern influenced birefringence assessment and providing insights into optimal patterns. We also discuss the difference between diagnostic accuracy and precision with respect to both the construction and application of PS-OCT embodiments.