Person:
Burkett, Patrick

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Burkett

First Name

Patrick

Name

Burkett, Patrick

Search Results

Now showing 1 - 1 of 1
  • Thumbnail Image
    Publication
    Silencing Nociceptor Neurons Reduces Allergic Airway Inflammation
    (Elsevier BV, 2015) Talbot, Sebastien; Abdulnour, Raja-Elie; Burkett, Patrick; Lee, Seungkyu; Cronin, Shane J.F.; Pascal, Maud A.; Laedermann, Cedric; Foster, Simmie; Tran, Johnathan V.; Lai, Nicole; Chiu, Isaac; Ghasemlou, Nader; DiBiase, Matthew; Roberson, David; Von Hehn, Christian; Agac, Busranour; Haworth, Oliver; Seki, Hiroyuki; Penninger, Josef M.; Kuchroo, Vijay; Bean, Bruce; Levy, Bruce; Woolf, Clifford
    Lung nociceptors initiate cough and bronchoconstriction. To elucidate if these fibers also contribute to allergic airway inflammation we stimulated lung nociceptors with capsaicin and observed increased neuropeptide release and immune cell infiltration. In contrast, ablating Nav1.8+ sensory neurons or silencing them with QX-314, a charged sodium channel inhibitor that enters via large pore ion channels to specifically block nociceptors, substantially reduced ovalbumin or house dust mite-induced airway inflammation and bronchial hyperresponsiveness. We also discovered that IL-5, a cytokine produced by activated immune cells, acts directly on nociceptors to induce release of vasoactive intestinal peptide (VIP). VIP then stimulates CD4+ and resident innate lymphoid type 2 cells, creating an inflammatory signaling loop that promotes allergic inflammation. Our results indicate that nociceptors amplify pathological adaptive immune responses and that silencing these neurons with QX-314 interrupts this neuro-immune interplay, revealing a potential new therapeutic strategy for asthma.