Person: Kuritzkes, Daniel
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Kuritzkes
First Name
Daniel
Name
Kuritzkes, Daniel
36 results
Search Results
Now showing 1 - 10 of 36
Publication Genome-Wide Association Study of Human Immunodeficiency Virus (HIV)-1 Coreceptor Usage in Treatment-Naive Patients from An AIDS Clinical Trials Group Study(Oxford University Press, 2014) Henrich, Timothy J.; McLaren, Paul J.; Rao, Suhas S. P.; Lin, Nina H.; Hanhauser, Emily; Giguel, Francoise; Gulick, Roy M.; Ribaudo, Heather; de Bakker, Paul I. W.; Kuritzkes, DanielObjectives. We conducted a genome-wide association study to explore whether common host genetic variants (>5% frequency) were associated with presence of virus able to use CXCR4 for entry. Methods. Phenotypic determination of human immunodeficiency virus (HIV)-1 coreceptor usage was performed on pretreatment plasma HIV-1 samples from treatment-naive participants in AIDS Clinical Trials Group A5095, a study of initial antiretroviral regimens. Associations between genome-wide single-nucleotide polymorphisms (SNPs), CCR5 Δ32 genotype, and human leukocyte antigen (HLA) class I alleles and viral coreceptor usage were explored. Results. Viral phenotypes were obtained from 593 patients with available genome-wide SNP data. Forty-four percent of subjects had virus capable of using CXCR4 for entry as determined by phenotyping. Overall, no associations, including those between polymorphisms in genes encoding viral coreceptors and their promoter regions or in HLA genes previously associated with HIV-1 disease progression, passed the statistical threshold for genome-wide significance (P < 5.0 × 10−8) in any comparison. However, the presence of viruses able to use CXCR4 for entry was marginally associated with the CCR5 Δ32 genotype in the nongenome-wide analysis. Conclusions. No human genetic variants were significantly associated with virus able to use CXCR4 for entry at the genome-wide level. Although the sample size had limited power to definitively exclude genetic associations, these results suggest that host genetic factors, including those that influence coreceptor expression or the immune pressures leading to viral envelope diversity, are either rare or have only modest effects in determining HIV-1 coreceptor usage.Publication Paper and Flexible Substrates as Materials for Biosensing Platforms to Detect Multiple Biotargets(Nature Publishing Group, 2015) Shafiee, Hadi; Asghar, Waseem; Inci, Fatih; Yuksekkaya, Mehmet; Jahangir, Muntasir; Zhang, Michael H.; Durmus, Naside Gozde; Gurkan, Umut Atakan; Kuritzkes, Daniel; Demirci, UtkanThe need for sensitive, robust, portable, and inexpensive biosensing platforms is of significant interest in clinical applications for disease diagnosis and treatment monitoring at the point-of-care (POC) settings. Rapid, accurate POC diagnostic assays play a crucial role in developing countries, where there are limited laboratory infrastructure, trained personnel, and financial support. However, current diagnostic assays commonly require long assay time, sophisticated infrastructure and expensive reagents that are not compatible with resource-constrained settings. Although paper and flexible material-based platform technologies provide alternative approaches to develop POC diagnostic assays for broad applications in medicine, they have technical challenges integrating to different detection modalities. Here, we address the limited capability of current paper and flexible material-based platforms by integrating cellulose paper and flexible polyester films as diagnostic biosensing materials with various detection modalities through the development and validation of new widely applicable electrical and optical sensing mechanisms using antibodies and peptides. By incorporating these different detection modalities, we present selective and accurate capture and detection of multiple biotargets including viruses (Human Immunodeficieny Virus-1), bacteria (Escherichia coli and Staphylococcus aureus), and cells (CD4+ T lymphocytes) from fingerprick volume equivalent of multiple biological specimens such as whole blood, plasma, and peritoneal dialysis effluent with clinically relevant detection and sensitivity.Publication Treatment with integrase inhibitor suggests a new interpretation of HIV RNA decay curves that reveals a subset of cells with slow integration(Public Library of Science, 2017) Cardozo, E. Fabian; Andrade, Adriana; Mellors, John W.; Kuritzkes, Daniel; Perelson, Alan S.; Ribeiro, Ruy M.The kinetics of HIV-1 decay under treatment depends on the class of antiretrovirals used. Mathematical models are useful to interpret the different profiles, providing quantitative information about the kinetics of virus replication and the cell populations contributing to viral decay. We modeled proviral integration in short- and long-lived infected cells to compare viral kinetics under treatment with and without the integrase inhibitor raltegravir (RAL). We fitted the model to data obtained from participants treated with RAL-containing regimes or with a four-drug regimen of protease and reverse transcriptase inhibitors. Our model explains the existence and quantifies the three phases of HIV-1 RNA decay in RAL-based regimens vs. the two phases observed in therapies without RAL. Our findings indicate that HIV-1 infection is mostly sustained by short-lived infected cells with fast integration and a short viral production period, and by long-lived infected cells with slow integration but an equally short viral production period. We propose that these cells represent activated and resting infected CD4+ T-cells, respectively, and estimate that infection of resting cells represent ~4% of productive reverse transcription events in chronic infection. RAL reveals the kinetics of proviral integration, showing that in short-lived cells the pre-integration population has a half-life of ~7 hours, whereas in long-lived cells this half-life is ~6 weeks. We also show that the efficacy of RAL can be estimated by the difference in viral load at the start of the second phase in protocols with and without RAL. Overall, we provide a mechanistic model of viral infection that parsimoniously explains the kinetics of viral load decline under multiple classes of antiretrovirals.Publication Collaborative update of a rule-based expert system for HIV-1 genotypic resistance test interpretation(Public Library of Science, 2017) Paredes, Roger; Tzou, Philip L.; van Zyl, Gert; Barrow, Geoff; Camacho, Ricardo; Carmona, Sergio; Grant, Philip M.; Gupta, Ravindra K.; Hamers, Raph L.; Harrigan, P. Richard; Jordan, Michael R.; Kantor, Rami; Katzenstein, David A.; Kuritzkes, Daniel; Maldarelli, Frank; Otelea, Dan; Wallis, Carole L.; Schapiro, Jonathan M.; Shafer, Robert W.Introduction: HIV-1 genotypic resistance test (GRT) interpretation systems (IS) require updates as new studies on HIV-1 drug resistance are published and as treatment guidelines evolve. Methods: An expert panel was created to provide recommendations for the update of the Stanford HIV Drug Resistance Database (HIVDB) GRT-IS. The panel was polled on the ARVs to be included in a GRT report, and the drug-resistance interpretations associated with 160 drug-resistance mutation (DRM) pattern-ARV combinations. The DRM pattern-ARV combinations included 52 nucleoside RT inhibitor (NRTI) DRM pattern-ARV combinations (13 patterns x 4 NRTIs), 27 nonnucleoside RT inhibitor (NNRTI) DRM pattern-ARV combinations (9 patterns x 3 NNRTIs), 39 protease inhibitor (PI) DRM pattern-ARV combinations (13 patterns x 3 PIs) and 42 integrase strand transfer inhibitor (INSTI) DRM pattern-ARV combinations (14 patterns x 3 INSTIs). Results: There was universal agreement that a GRT report should include the NRTIs lamivudine, abacavir, zidovudine, emtricitabine, and tenofovir disoproxil fumarate; the NNRTIs efavirenz, etravirine, nevirapine, and rilpivirine; the PIs atazanavir/r, darunavir/r, and lopinavir/r (with “/r” indicating pharmacological boosting with ritonavir or cobicistat); and the INSTIs dolutegravir, elvitegravir, and raltegravir. There was a range of opinion as to whether the NRTIs stavudine and didanosine and the PIs nelfinavir, indinavir/r, saquinavir/r, fosamprenavir/r, and tipranavir/r should be included. The expert panel members provided highly concordant DRM pattern-ARV interpretations with only 6% of NRTI, 6% of NNRTI, 5% of PI, and 3% of INSTI individual expert interpretations differing from the expert panel median by more than one resistance level. The expert panel median differed from the HIVDB 7.0 GRT-IS for 20 (12.5%) of the 160 DRM pattern-ARV combinations including 12 NRTI, two NNRTI, and six INSTI pattern-ARV combinations. Eighteen of these differences were updated in HIVDB 8.1 GRT-IS to reflect the expert panel median. Additionally, HIVDB users are now provided with the option to exclude those ARVs not considered to be universally required. Conclusions: The HIVDB GRT-IS was updated through a collaborative process to reflect changes in HIV drug resistance knowledge, treatment guidelines, and expert opinion. Such a process broadens consensus among experts and identifies areas requiring further study.Publication Human Herpes Virus 8 in HIV-1 infected individuals receiving cancer chemotherapy and stem cell transplantation(Public Library of Science, 2018) Hogan, Louise E.; Hanhauser, Emily; Hobbs, Kristen S.; Palmer, Christine D.; Robles, Yvonne; Jost, Stephanie; LaCasce, Anne S.; Abramson, Jeremy; Hamdan, Ayad; Marty, Francisco; Kuritzkes, Daniel; Henrich, Timothy J.Background: Human Herpes Virus 8 (HHV8) can cause Kaposi’s Sarcoma (KS) in immunosuppressed individuals. However, little is known about the association between chemotherapy or hematopoietic stem cell transplantation (HSCT), circulating HHV8 DNA levels, and clinical KS in HIV-1-infected individuals with various malignancies. Therefore, we examined the associations between various malignancies, systemic cancer chemotherapy, T cell phenotypes, and circulating HHV8 DNA in 29 HIV-1-infected participants with concomitant KS or other cancer diagnoses. Methods: We quantified HHV8 plasma viral loads and cell-associated HHV8 DNA and determined the relationship between circulating HHV8 DNA and lymphocyte counts, and markers of early and late lymphocyte activation, proliferation and exhaustion. Results: There were no significant differences in plasma HHV8 DNA levels between baseline and post-chemotherapy time points or with the presence or absence of clinical KS. However, in two participants circulating HHV8 DNA increased following treatment for KS or HSCT for lymphoma,. We observed an approximately 2-log10 reduction in plasma HHV8 DNA in an individual with KS and multicentric Castleman disease following rituximab monotherapy. Although individuals with clinical KS had lower mean CD4+ T cell counts and percentages as expected, there were no significant associations with these factors and plasma HHV8 levels. We identified increased proportions of CD8+ and CD4+ T cells expressing CD69 (P = 0.01 & P = 0.04 respectively), and increased CD57 expression on CD4+ T cells (P = 0.003) in participants with detectable HHV8. Conclusion: These results suggest there is a complex relationship between circulating HHV8 DNA and tissue-based disease in HIV-1 and HHV8 co-infected individuals with various malignancies.Publication Increased HIV-1 transcriptional activity and infectious burden in peripheral blood and gut-associated CD4+ T cells expressing CD30(Public Library of Science, 2018) Hogan, Louise E.; Vasquez, Joshua; Hobbs, Kristen S.; Hanhauser, Emily; Aguilar-Rodriguez, Brandon; Hussien, Rajaa; Thanh, Cassandra; Gibson, Erica A.; Carvidi, Alexander B.; Smith, Louis C. B.; Khan, Shahzada; Trapecar, Martin; Sanjabi, Shomyseh; Somsouk, Ma; Stoddart, Cheryl A.; Kuritzkes, Daniel; Deeks, Steven G.; Henrich, Timothy J.HIV-1-infected cells persist indefinitely despite the use of combination antiretroviral therapy (ART), and novel therapeutic strategies to target and purge residual infected cells in individuals on ART are urgently needed. Here, we demonstrate that CD4+ T cell-associated HIV-1 RNA is often highly enriched in cells expressing CD30, and that cells expressing this marker considerably contribute to the total pool of transcriptionally active CD4+ lymphocytes in individuals on suppressive ART. Using in situ RNA hybridization studies, we show co-localization of CD30 with HIV-1 transcriptional activity in gut-associated lymphoid tissues. We also demonstrate that ex vivo treatment with brentuximab vedotin, an antibody-drug conjugate (ADC) that targets CD30, significantly reduces the total amount of HIV-1 DNA in peripheral blood mononuclear cells obtained from infected, ART-suppressed individuals. Finally, we observed that an HIV-1-infected individual, who received repeated brentuximab vedotin infusions for lymphoma, had no detectable virus in peripheral blood mononuclear cells. Overall, CD30 may be a marker of residual, transcriptionally active HIV-1 infected cells in the setting of suppressive ART. Given that CD30 is only expressed on a small number of total mononuclear cells, it is a potential therapeutic target of persistent HIV-1 infection.Publication Cost-effectiveness of public-health policy options in the presence of pretreatment NNRTI drug resistance in sub-Saharan Africa: a modelling study(Elsevier B.V, 2018) Phillips, Andrew N; Cambiano, Valentina; Nakagawa, Fumiyo; Revill, Paul; Jordan, Michael R; Hallett, Timothy B; Doherty, Meg; De Luca, Andrea; Lundgren, Jens D; Mhangara, Mutsa; Apollo, Tsitsi; Mellors, John; Nichols, Brooke; Parikh, Urvi; Pillay, Deenan; Rinke de Wit, Tobias; Sigaloff, Kim; Havlir, Diane; Kuritzkes, Daniel; Pozniak, Anton; van de Vijver, David; Vitoria, Marco; Wainberg, Mark A; Raizes, Elliot; Bertagnolio, SilviaSummary Background: There is concern over increasing prevalence of non-nucleoside reverse-transcriptase inhibitor (NNRTI) resistance in people initiating antiretroviral therapy (ART) in low-income and middle-income countries. We assessed the effectiveness and cost-effectiveness of alternative public health responses in countries in sub-Saharan Africa where the prevalence of pretreatment drug resistance to NNRTIs is high. Methods: The HIV Synthesis Model is an individual-based simulation model of sexual HIV transmission, progression, and the effect of ART in adults, which is based on extensive published data sources and considers specific drugs and resistance mutations. We used this model to generate multiple setting scenarios mimicking those in sub-Saharan Africa and considered the prevalence of pretreatment NNRTI drug resistance in 2017. We then compared effectiveness and cost-effectiveness of alternative policy options. We took a 20 year time horizon, used a cost effectiveness threshold of US$500 per DALY averted, and discounted DALYs and costs at 3% per year. Findings: A transition to use of a dolutegravir as a first-line regimen in all new ART initiators is the option predicted to produce the most health benefits, resulting in a reduction of about 1 death per year per 100 people on ART over the next 20 years in a situation in which more than 10% of ART initiators have NNRTI resistance. The negative effect on population health of postponing the transition to dolutegravir increases substantially with higher prevalence of HIV drug resistance to NNRTI in ART initiators. Because of the reduced risk of resistance acquisition with dolutegravir-based regimens and reduced use of expensive second-line boosted protease inhibitor regimens, this policy option is also predicted to lead to a reduction of overall programme cost. Interpretation A future transition from first-line regimens containing efavirenz to regimens containing dolutegravir formulations in adult ART initiators is predicted to be effective and cost-effective in low-income settings in sub-Saharan Africa at any prevalence of pre-ART NNRTI resistance. The urgency of the transition will depend largely on the country-specific prevalence of NNRTI resistance. Funding Bill & Melinda Gates Foundation, World Health Organization.Publication Micro-a-fluidics ELISA for Rapid CD4 Cell Count at the Point-of-Care(Nature Publishing Group, 2014) Wang, ShuQi; Tasoglu, Savas; Chen, Paul; Chen, Michael; Akbas, Ragip; Wach, Sonya; Ozdemir, Cenk Ibrahim; Gurkan, Umut Atakan; Giguel, Francoise F.; Kuritzkes, Daniel; Demirci, UtkanHIV has become one of the most devastating pathogens in human history. Despite fast progress in HIV-related basic research, antiretroviral therapy (ART) remains the most effective method to save AIDS patients' lives. Unfortunately, ART cannot be universally accessed, especially in developing countries, due to the lack of effective treatment monitoring diagnostics. Here, we present an inexpensive, rapid and portable micro-a-fluidic platform, which can streamline the process of an enzyme-linked immunosorbent assay (ELISA) in a fully automated manner for CD4 cell count. The micro-a-fluidic CD4 cell count is achieved by eliminating operational fluid flow via “moving the substrate”, as opposed to “flowing liquid” in traditional ELISA or microfluidic methods. This is the first demonstration of capturing and detecting cells from unprocessed whole blood using the enzyme-linked immunosorbent assay (ELISA) in a microfluidic channel. Combined with cell phone imaging, the presented micro-a-fluidic ELISA platform holds great promise for offering rapid CD4 cell count to scale up much needed ART in resource-constrained settings. The developed system can be extended to multiple areas for ELISA-related assays.Publication Dynamics of Immune Reconstitution and Activation Markers in HIV+ Treatment-Naïve Patients Treated with Raltegravir, Tenofovir Disoproxil Fumarate and Emtricitabine(Public Library of Science, 2013) Funderburg, Nicholas T.; Andrade, Adriana; Chan, Ellen; Rosenkranz, Susan; Lu, Darlene; Clagett, Brian; Pilch-Cooper, Heather A.; Rodriguez, Benigno; Feinberg, Judith; Daar, Eric; Mellors, John; Kuritzkes, Daniel; Jacobson, Jeffrey M.; Lederman, Michael M.Background: The dynamics of CD4+ T cell reconstitution and changes in immune activation and inflammation in HIV-1 disease following initiation of antiretroviral therapy (ART) are incompletely defined and their underlying mechanisms poorly understood. Methods: Thirty-nine treatment-naïve patients were treated with raltegravir, tenofovir DF and emtricitabine. Immunologic and inflammatory indices were examined in persons with sustained virologic control during 48 weeks of therapy. Results: Initiation of ART increased CD4+ T cell numbers and decreased activation and cell cycle entry among CD4+ and CD8+ T cell subsets, and attenuated markers of coagulation (D-dimer levels) and inflammation (IL-6 and TNFr1). These indices decayed at different rates and almost all remained elevated above levels measured in HIV-seronegatives through 48 weeks of viral control. Greater first and second phase CD4+ T cell restoration was related to lower T cell activation and cell cycling at baseline, to their decay with treatment, and to baseline levels of selected inflammatory indices, but less so to their changes on therapy. Conclusions: ART initiation results in dynamic changes in viral replication, T cell restoration, and indices of immune activation, inflammation, and coagulation. These findings suggest that determinants of T cell activation/cycling and inflammation/coagulation may have distinguishable impact on immune homeostasis. Trial Registration Clinicaltrials.gov NCT00660972Publication Nanostructured Optical Photonic Crystal Biosensor for HIV Viral Load Measurement(Nature Publishing Group, 2014) Shafiee, Hadi; Lidstone, Erich A.; Jahangir, Muntasir; Inci, Fatih; Hanhauser, Emily; Henrich, Timothy J.; Kuritzkes, Daniel; Cunningham, Brian T.; Demirci, UtkanDetecting and quantifying biomarkers and viruses in biological samples have broad applications in early disease diagnosis and treatment monitoring. We have demonstrated a label-free optical sensing mechanism using nanostructured photonic crystals (PC) to capture and quantify intact viruses (HIV-1) from biologically relevant samples. The nanostructured surface of the PC biosensor resonantly reflects a narrow wavelength band during illumination with a broadband light source. Surface-adsorbed biotarget induces a shift in the resonant Peak Wavelength Value (PWV) that is detectable with <10 pm wavelength resolution, enabling detection of both biomolecular layers and small number of viruses that sparsely populate the transducer surface. We have successfully captured and detected HIV-1 in serum and phosphate buffered saline (PBS) samples with viral loads ranging from 104 to 108 copies/mL. The surface density of immobilized biomolecular layers used in the sensor functionalization process, including 3-mercaptopropyltrimethoxysilane (3-MPS), N-gamma-Maleimidobutyryl-oxysuccinimide ester (GMBS), NeutrAvidin, anti-gp120, and bovine serum albumin (BSA) were also quantified by the PC biosensor.