Person: Kang, Peter
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Kang
First Name
Peter
Name
Kang, Peter
8 results
Search Results
Now showing 1 - 8 of 8
Publication Highly conductive, stretchable and biocompatible Ag–Au core–sheath nanowire composite for wearable and implantable bioelectronics(Springer Science and Business Media LLC, 2018-08-13) Choi, Suji; Han, Sang Ihn; Jung, Dongjun; Hwang, Hye Jin; Lim, Chaehong; Bae, Soochan; Park, Ok Kyu; Tschabrunn, Cory M.; Lee, Mincheol; Bae, Sun Youn; Yu, Ji Woong; Ryu, Ji Ho; Lee, Sang-Woo; Park, Kyungpyo; Kang, Peter; Lee, Won Bo; Nezafat, Reza; Hyeon, Taeghwan; Kim, Dae-HyeongWearable and implantable devices require conductive, stretchable and biocompatible materials. However, obtaining composites that simultaneously fulfil these requirements is challenging due to a trade-off between conductivity and stretchability. Here, we report on Ag-Au nanocomposites composed of ultralong gold-coated silver nanowires in an elastomeric block-copolymer matrix. Owing to the high aspect ratio and percolation network of the Ag-Au nanowires, the nanocomposites exhibit an optimized conductivity of 41,850 S cm-1 (maximum of 72,600 S cm-1). Phase separation in the Ag-Au nanocomposite during the solvent-drying process generates a microstructure that yields an optimized stretchability of 266% (maximum of 840%). The thick gold sheath deposited on the silver nanowire surface prevents oxidation and silver ion leaching, making the composite biocompatible and highly conductive. Using the nanocomposite, we successfully fabricate wearable and implantable soft bioelectronic devices that can be conformally integrated with human skin and swine heart for continuous electrophysiological recording, and electrical and thermal stimulation.Publication H2O2-responsive molecularly engineered polymer nanoparticles as ischemia/reperfusion-targeted nanotherapeutic agents(Nature Publishing Group, 2013) Lee, Dongwon; Bae, Soochan; Hong, Donghyun; Lim, Hyungsuk; Yoon, Joo Heung; Hwang, On; Park, Seunggyu; Ke, Qingen; Khang, Gilson; Kang, PeterThe main culprit in the pathogenesis of ischemia/reperfusion (I/R) injury is the overproduction of reactive oxygen species (ROS). Hydrogen peroxide (H2O2), the most abundant form of ROS produced during I/R, causes inflammation, apoptosis and subsequent tissue damages. Here, we report H2O2-responsive antioxidant nanoparticles formulated from copolyoxalate containing vanillyl alcohol (VA) (PVAX) as a novel I/R-targeted nanotherapeutic agent. PVAX was designed to incorporate VA and H2O2-responsive peroxalate ester linkages covalently in its backbone. PVAX nanoparticles therefore degrade and release VA, which is able to reduce the generation of ROS, and exert anti-inflammatory and anti-apoptotic activity. In hind-limb I/R and liver I/R models in mice, PVAX nanoparticles specifically reacted with overproduced H2O2 and exerted highly potent anti-inflammatory and anti-apoptotic activities that reduced cellular damages. Therefore, PVAX nanoparticles have tremendous potential as nanotherapeutic agents for I/R injury and H2O2-associated diseases.Publication Abnormal Calcium Handling and Exaggerated Cardiac Dysfunction in Mice with Defective Vitamin D Signaling(Public Library of Science, 2014) Choudhury, Sangita; Bae, Soochan; Ke, Qingen; Lee, Ji Yoo; Singh, Sylvia S.; St-Arnaud, René; Del Monte, Federica; Kang, PeterAim Altered vitamin D signaling is associated with cardiac dysfunction, but the pathogenic mechanism is not clearly understood. We examine the mechanism and the role of vitamin D signaling in the development of cardiac dysfunction. Methods and Results: We analyzed 1α-hydroxylase (1α-OHase) knockout (1α-OHase−/−) mice, which lack 1α-OH enzymes that convert the inactive form to hormonally active form of vitamin D. 1α-OHase−/− mice showed modest cardiac hypertrophy at baseline. Induction of pressure overload by transverse aortic constriction (TAC) demonstrated exaggerated cardiac dysfunction in 1α-OHase−/− mice compared to their WT littermates with a significant increase in fibrosis and expression of inflammatory cytokines. Analysis of calcium (Ca2+) transient demonstrated profound Ca2+ handling abnormalities in 1α-OHase−/− mouse cardiomyocytes (CMs), and treatment with paricalcitol (PC), an activated vitamin D3 analog, significantly attenuated defective Ca2+ handling in 1α-OHase−/− CMs. We further delineated the effect of vitamin D deficiency condition to TAC by first correcting the vitamin D deficiency in 1α-OHase−/− mice, followed then by either a daily maintenance dose of vitamin D or vehicle (to achieve vitamin D deficiency) at the time of sham or TAC. In mice treated with vitamin D, there was a significant attenuation of TAC-induced cardiac hypertrophy, interstitial fibrosis, inflammatory markers, Ca2+ handling abnormalities and cardiac function compared to the vehicle treated animals. Conclusions: Our results provide insight into the mechanism of cardiac dysfunction, which is associated with severely defective Ca2+ handling and defective vitamin D signaling in 1α-OHase−/− mice.Publication RhoA signaling in cardiomyocytes protects against stress-induced heart failure but facilitates cardiac fibrosis(American Association for the Advancement of Science (AAAS), 2014) Lauriol, J; Keith, K.; Jaffre, Fabrice; Couvillon, A.; Saci, A.; Goonasekera, S. A.; McCarthy, Jason; Kessinger, Chase; Wang, Jeffrey; Ke, Q; Kang, Peter; Molkentin, J. D.; Carpenter, C.; Kontaridis, MariaThe Ras-related guanosine triphosphatase RhoA mediates pathological cardiac hypertrophy, but also promotes cell survival and is cardioprotective after ischemia/reperfusion injury. To understand how RhoA mediates these opposing roles in the myocardium, we generated mice with a cardiomyocyte-specific deletion of RhoA. Under normal conditions, the hearts from these mice showed functional, structural, and growth parameters similar to control mice. Additionally, the hearts of the cardiomyocyte-specific, RhoA-deficient mice subjected to transverse aortic constriction (TAC)-a procedure that induces pressure overload and, if prolonged, heart failure-exhibited a similar amount of hypertrophy as those of the wild-type mice subjected to TAC. Thus, neither normal cardiac homeostasis nor the initiation of compensatory hypertrophy required RhoA in cardiomyocytes. However, in response to chronic TAC, hearts from mice with cardiomyocyte-specific deletion of RhoA showed greater dilation, with thinner ventricular walls and larger chamber dimensions, and more impaired contractile function than those from control mice subjected to chronic TAC. These effects were associated with aberrant calcium signaling, as well as decreased activity of extracellular signal-regulated kinases 1 and 2 (ERK1/2) and AKT. In addition, hearts from mice with cardiomyocyte-specific RhoA deficiency also showed less fibrosis in response to chronic TAC, with decreased transcriptional activation of genes involved in fibrosis, including myocardin response transcription factor (MRTF) and serum response factor (SRF), suggesting that the fibrotic response to stress in the heart depends on cardiomyocyte-specific RhoA signaling. Our data indicated that RhoA regulates multiple pathways in cardiomyocytes, mediating both cardioprotective (hypertrophy without dilation) and cardio-deleterious effects (fibrosis). The Ras-related guanosine triphosphatase RhoA mediates pathological cardiac hypertrophy, but also promotes cell survival and is cardioprotective after ischemia/reperfusion injury. To understand how RhoA mediates these opposing roles in the myocardium, we generated mice with a cardiomyocyte-specific deletion of RhoA. Under normal conditions, the hearts from these mice showed functional, structural, and growth parameters similar to control mice. Additionally, the hearts of the cardiomyocyte-specific, RhoA-deficient mice subjected to transverse aortic constriction (TAC)-a procedure that induces pressure overload and, if prolonged, heart failure-exhibited a similar amount of hypertrophy as those of the wild-type mice subjected to TAC. Thus, neither normal cardiac homeostasis nor the initiation of compensatory hypertrophy required RhoA in cardiomyocytes. However, in response to chronic TAC, hearts from mice with cardiomyocyte-specific deletion of RhoA showed greater dilation, with thinner ventricular walls and larger chamber dimensions, and more impaired contractile function than those from control mice subjected to chronic TAC. These effects were associated with aberrant calcium signaling, as well as decreased activity of extracellular signal-regulated kinases 1 and 2 (ERK1/2) and AKT. In addition, hearts from mice with cardiomyocyte-specific RhoA deficiency also showed less fibrosis in response to chronic TAC, with decreased transcriptional activation of genes involved in fibrosis, including myocardin response transcription factor (MRTF) and serum response factor (SRF), suggesting that the fibrotic response to stress in the heart depends on cardiomyocyte-specific RhoA signaling. Our data indicated that RhoA regulates multiple pathways in cardiomyocytes, mediating both cardioprotective (hypertrophy without dilation) and cardio-deleterious effects (fibrosis).Publication Endothelin A Receptor Antagonist, Atrasentan, Attenuates Renal and Cardiac Dysfunction in Dahl Salt-Hypertensive Rats in a Blood Pressure Independent Manner(Public Library of Science, 2015) Samad, Mohammed A.; Kim, Ui Kyoung; Kang, Joshua J.; Ke, Qingen; Kang, PeterProteinuria is a hallmark of chronic kidney disease (CKD) and cardiovascular disease (CVD), and a good predictor of clinical outcome. Selective endothelin A (ETA) receptor antagonist used with renin-angiotensin system (RAS) inhibitors prevents development of proteinuria in CKD. However, whether the improvement in proteinuria would have beneficial effects on CVD, independent of RAS inhibition, is not well understood. In this study, we investigated whether atrasentan, an ETA receptor antagonist, has renal and cardiovascular effects independent of RAS inhibition. Male Dahl salt sensitive (DSS) rats, at six weeks of age, received water with or without different doses of atrasentan and/or enalapril under high salt (HS) diet or normal diet (ND) for 6 weeks. At the end of 12th week, atrasentan at a moderate dose significantly attenuated proteinuria and serum creatinine without reducing mean arterial pressure (MAP), thereby preventing cardiac hypertrophy and improving cardiac function. ACE inhibitor enalapril at a dose that did not significantly lowered BP, attenuated cardiac hypertrophy while moderately improving cardiac function without reducing proteinuria and serum creatinine level. Nonetheless, combined therapy of atrasentan and enalapril that does not altering BP exerted additional cardioprotective effect. Based on these findings, we conclude that BP independent monotherapy of ETA receptor antagonist attenuates the progression of CKD and significantly mitigates CVD independent of RAS inhibition.Publication A slowly progressive form of limb-girdle muscular dystrophy type 2C associated with founder mutation in the SGCG gene in Puerto Rican Hispanics(BlackWell Publishing Ltd, 2015) Al-Zaidy, Samiah A; Malik, Vinod; Kneile, Kelley; Rosales, Xiomara Q; Gomez, Ana Maria; Lewis, Sarah; Hashimoto, Sayaka; Gastier-Foster, Julie; Kang, Peter; Darras, Basil; Kunkel, Louis; Carlo, Jose; Sahenk, Zarife; Moore, Steven A; Pyatt, Robert; Mendell, Jerry RLimb-girdle muscular dystrophy type 2C (LGMD2C) is considered one of the severe forms of childhood-onset muscular dystrophy. The geographical distribution of founder mutations in the SGCG gene has a prominent effect on the prevalence of LGMD2C in certain populations. The aim of this study was to confirm the hypothesis that the c.787G>A (p.E263K) mutation in the SGCG gene is a founder mutation among Puerto Rican Hispanics and to characterize the associated clinical and immunohistochemical phenotype. Genotyping of six polymorphic microsatellite markers internal to (D13S232) and flanking (D13S175, D13S292, D13S787, D13S1243, D13S283) the SGCG gene was performed on four unrelated Puerto Rican patients with LGMD2C. Preserved ambulation to the second decade of life was observed in at least two subjects. Immunostaining of skeletal muscle demonstrated absence of γ-sarcoglycan in all affected subjects. Two markers, D13S232 and D13S292, were highly informative and confirmed that all four families share the haplotype of the mutant allele. Our findings confirm that the E263K missense mutation in the SGCG gene is a founder mutation in Puerto Rican Hispanics. A slowly progressive disease course with prolonged preservation of ambulation can be seen in association with this mutation, providing evidence for phenotypic variability.Publication Hydrogen peroxide-activatable antioxidant prodrug as a targeted therapeutic agent for ischemia-reperfusion injury(Nature Publishing Group, 2015) Lee, Dongwon; Park, Seunggyu; Bae, Soochan; Jeong, Dahee; Park, Minhyung; Kang, Changsun; Yoo, Wooyoung; Samad, Mohammed A.; Ke, Qingen; Khang, Gilson; Kang, PeterOverproduction of hydrogen peroxide (H2O2) causes oxidative stress and is the main culprit in the pathogenesis of ischemia/reperfusion (I/R) injury. Suppression of oxidative stress is therefore critical in the treatment of I/R injury. Here, we report H2O2-activatable antioxidant prodrug (BRAP) that is capable of specifically targeting the site of oxidative stress and exerting anti-inflammatory and anti-apoptotic activities. BRAP with a self-immolative boronic ester protecting group was designed to scavenge H2O2 and release HBA (p-hydroxybenzyl alcohol) with antioxidant and anti-inflammatory activities. BRAP exerted potent antioxidant and anti-inflammatory activity in lipopolysaccharide (LPS)- and H2O2-stimulated cells by suppressing the generation of ROS and pro-inflammatory cytokines. In mouse models of hepatic I/R and cardiac I/R, BRAP exerted potent antioxidant, anti-inflammatory and anti-apoptotic activities due to the synergistic effects of H2O2-scavenging boronic esters and therapeutic HBA. In addition, administration of high doses of BRAP daily for 7 days showed no renal or hepatic function abnormalities. Therefore BRAP has tremendous therapeutic potential as H2O2-activatable antioxidant prodrug for the treatment of I/R injuries.Publication Hydrogen Peroxide‐Responsive Nanoparticle Reduces Myocardial Ischemia/Reperfusion Injury(John Wiley and Sons Inc., 2016) Bae, Soochan; Park, Minhyung; Kang, Changsun; Dilmen, Serkan; Kang, Tae Hi; Kang, Dong Goo; Ke, Qingen; Lee, Seung Uk; Lee, Dongwon; Kang, PeterBackground: During myocardial ischemia/reperfusion (I/R), a large amount of reactive oxygen species (ROS) is produced. In particular, overproduction of hydrogen peroxide (H2O2) is considered to be a main cause of I/R‐mediated tissue damage. We generated novel H2O2‐responsive antioxidant polymer nanoparticles (PVAX and HPOX) that are able to target the site of ROS overproduction and attenuate the oxidative stress‐associated diseases. In this study, nanoparticles were examined for their therapeutic effect on myocardial I/R injury. Methods and Results: The therapeutic effect of nanoparticles during cardiac I/R was evaluated in mice. A single dose of PVAX (3 mg/kg) showed a significant improvement in both cardiac output and fraction shortening compared with poly(lactic‐coglycolic acid) (PLGA) particle, a non‐H2O2‐activatable nanoparticle. PVAX also significantly reduced the myocardial infarction/area compared with PLGA (48.7±4.2 vs 14.5±2.1). In addition, PVAX effectively reduced caspase‐3 activation and TUNEL‐positive cells compared with PLGA. Furthermore, PVAX significantly decreased TNF‐α and MCP‐1 mRNA levels. To explore the antioxidant effect of PVAX by scavenging ROS, dihydroethidium staining was used as an indicator of ROS generation. PVAX effectively suppressed the generation of ROS caused by I/R, whereas a number of dihydroethidium‐positive cells were observed in a group with PLGA I/R. In addition, PVAX significantly reduced the level of NADPH oxidase (NOX) 2 and 4 expression, which favors the reduction in ROS generation after I/R. Conclusions: Taken together, these results suggest that H2O2‐responsive antioxidant PVAX has tremendous potential as a therapeutic agent for myocardial I/R injury.