Person: Atlas, Steven
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Atlas
First Name
Steven
Name
Atlas, Steven
3 results
Search Results
Now showing 1 - 3 of 3
Publication A Clinical Genetic Method to Identify Mechanisms by Which Pain Causes Depression and Anxiety(BioMed Central, 2006) Max, Mitchell B; Wu, Tianxia; Haythornthwaite, Jennifer A; Bollettino, Antonella F; Hipp, Heather S; McKnight, Colin D; Osman, Inge A; Crawford, Erin N; Pao, Maryland; Nejim, Jemiel; Kingman, Albert; Aisen, Daniel C; Scully, Michele A; Keller, Robert B; Goldman, David; Belfer, Inna; Atlas, Steven; Edwards, RobertBackground: Pain patients are often depressed and anxious, and benefit less from psychotropic drugs than pain-free patients. We hypothesize that this partial resistance is due to the unique neurochemical contribution to mood by afferent pain projections through the spino-parabrachial-hypothalamic-amygdalar systems and their projections to other mood-mediating systems. New psychotropic drugs for pain patients might target molecules in such brain systems. We propose a method to prioritize molecular targets by studying polymorphic genes in cohorts of patients undergoing surgical procedures associated with a variable pain relief response. We seek molecules that show a significant statistical interaction between (1) the amount of surgical pain relief, and (2) the alleles of the gene, on depression and anxiety during the first postoperative year. Results: We collected DNA from 280 patients with sciatica due to a lumbar disc herniation, 162 treated surgically and 118 non-surgically, who had been followed for 10 years in the Maine Lumbar Spine Study, a large, prospective, observational study. In patients whose pain was reduced >25% by surgery, symptoms of depression and anxiety, assessed with the SF-36 Mental Health Scale, improved briskly at the first postoperative measurement. In patients with little or no surgical pain reduction, mood scores stayed about the same on average. There was large inter-individual variability at each level of residual pain. Polymorphisms in three pre-specified pain-mood candidate genes, catechol-O-methyl transferase (COMT), serotonin transporter, and brain-derived neurotrophic factor (BDNF) were not associated with late postoperative mood or with a pain-gene interaction on mood. Although the sample size did not provide enough power to persuasively search through a larger number of genes, an exploratory survey of 25 other genes provides illustrations of pain-gene interactions on postoperative mood – the mu opioid receptor for short-term effects of acute sciatica on mood, and the galanin-2 receptor for effects of unrelieved post-discectomy pain on mood one year after surgery. Conclusion: Genomic analysis of longitudinal studies of pain, depression, and anxiety in patients undergoing pain-relieving surgery may help to identify molecules through which pain alters mood. Detection of alleles with modest-sized effects will require larger cohorts.Publication Do Motor Control Genes Contribute to Interindividual Variability in Decreased Movement in Patients with Pain?(BioMed Central, 2007) Mishra, Bikash K; Wu, Tianxia; Belfer, Inna; Hodgkinson, Colin A; Cohen, Leonardo G; Kiselycznyk, Carly; Kingman, Albert; Keller, Robert B; Yuan, Qiaoping; Goldman, David; Max, Mitchell B; Atlas, StevenBackground: Because excessive reduction in activities after back injury may impair recovery, it is important to understand and address the factors contributing to the variability in motor responses to pain. The current dominant theory is the "fear-avoidance model", in which the some patients' heightened fears of further injury cause them to avoid movement. We propose that in addition to psychological factors, neurochemical variants in the circuits controlling movement and their modification by pain may contribute to this variability. A systematic search of the motor research literature and genetic databases yielded a prioritized list of polymorphic motor control candidate genes. We demonstrate an analytic method that we applied to 14 of these genes in 290 patients with acute sciatica, whose reduction in movement was estimated by items from the Roland-Morris Disability Questionnaire. Results: We genotyped a total of 121 single nucleotide polymorphisms (SNPs) in 14 of these genes, which code for the dopamine D2 receptor, GTP cyclohydrolase I, glycine receptor α1 subunit, GABA-A receptor α2 subunit, GABA-A receptor β1 subunit, α-adrenergic 1C, 2A, and 2C receptors, serotonin 1A and 2A receptors, cannabinoid CB-1 receptor, M1 muscarinic receptor, and the tyrosine hydroxylase, and tachykinin precursor-1 molecules. No SNP showed a significant association with the movement score after a Bonferroni correction for the 14 genes tested. Haplotype analysis of one of the blocks in the GABA-A receptor β1 subunit showed that a haplotype of 11% frequency was associated with less limitation of movement at a nominal significance level value (p = 0.0025) almost strong enough to correct for testing 22 haplotype blocks. Conclusion: If confirmed, the current results may suggest that a common haplotype in the GABA-A β1 subunit acts like an "endogenous muscle relaxant" in an individual with subacute sciatica. Similar methods might be applied a larger set of genes in animal models and human laboratory and clinical studies to understand the causes and prevention of pain-related reduction in movement.Publication Patient navigation for lung cancer screening among current smokers in community health centers a randomized controlled trial(John Wiley and Sons Inc., 2018) Percac‐Lima, Sanja; Ashburner, Jeffrey; Rigotti, Nancy; Park, Elyse; Chang, Yuchiao; Kuchukhidze, Salome; Atlas, StevenAbstract Annual chest computed tomography (CT) can decrease lung cancer mortality in high‐risk individuals. Patient navigation improves cancer screening rates in underserved populations. Randomized controlled trial was conducted from February 2016 to January 2017 to evaluate the impact of a patient navigation program on lung cancer screening (LCS) among current smokers in five community health centers (CHCs) affiliated with an academic primary care network. We randomized 1200 smokers aged 55–77 years to intervention (n = 400) or usual care (n = 800). Navigators contacted patients to determine LCS eligibility, introduce shared decision making about screening, schedule appointments with primary care physicians (PCPs), and help overcome barriers to obtaining screening and follow‐up. Control patients received usual care. The main outcome was the proportion of patients who had any chest CT. Secondary outcomes were the proportion of patients contacted, proportion receiving LCS CTs, screening results and number of lung cancers diagnosed. Of the 400 intervention patients, 335 were contacted and 76 refused participation. Of the 259 participants, 124 (48%) were ineligible for screening; 119 had smoked <30 pack‐years, and five had competing comorbidities. Among the 135 eligible participants in the intervention group, 124 (92%) had any chest CT performed. In intention‐to‐treat analyses, 124 intervention patients (31%) had any chest CT versus 138 control patients (17.3%, P < 0.001). LCS CTs were performed in 94 intervention patients (23.5%) versus 69 controls (8.6%, P < 0.001). A total of 20% of screened patients required follow‐up. Lung cancer was diagnosed in eight intervention (2%) and four control (0.5%) patients. A patient navigation program implemented in CHCs significantly increased LCS among high‐risk current smokers.