Person: Xi, Zhenxiang
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Xi
First Name
Zhenxiang
Name
Xi, Zhenxiang
9 results
Search Results
Now showing 1 - 9 of 9
Publication Phylogenomics and Coalescent Analyses Resolve Extant Seed Plant Relationships(Public Library of Science, 2013) Xi, Zhenxiang; Rest, Joshua S.; Davis, CharlesThe extant seed plants include more than 260,000 species that belong to five main lineages: angiosperms, conifers, cycads, Ginkgo, and gnetophytes. Despite tremendous effort using molecular data, phylogenetic relationships among these five lineages remain uncertain. Here, we provide the first broad coalescent-based species tree estimation of seed plants using genome-scale nuclear and plastid data By incorporating 305 nuclear genes and 47 plastid genes from 14 species, we identify that i) extant gymnosperms (i.e., conifers, cycads, Ginkgo, and gnetophytes) are monophyletic, ii) gnetophytes exhibit discordant placements within conifers between their nuclear and plastid genomes, and iii) cycads plus Ginkgo form a clade that is sister to all remaining extant gymnosperms. We additionally observe that the placement of Ginkgo inferred from coalescent analyses is congruent across different nucleotide rate partitions. In contrast, the standard concatenation method produces strongly supported, but incongruent placements of Ginkgo between slow- and fast-evolving sites. Specifically, fast-evolving sites yield relationships in conflict with coalescent analyses. We hypothesize that this incongruence may be related to the way in which concatenation methods treat sites with elevated nucleotide substitution rates. More empirical and simulation investigations are needed to understand this potential weakness of concatenation methods.Publication Plastid phylogenomics and green plant phylogeny: almost full circle but not quite there(BioMed Central, 2014) Davis, Charles; Xi, Zhenxiang; Mathews, SarahA study in BMC Evolutionary Biology represents the most comprehensive effort to clarify the phylogeny of green plants using sequences from the plastid genome. This study highlights the strengths and limitations of plastome data for resolving the green plant phylogeny, and points toward an exciting future for plant phylogenetics, during which the vast and largely untapped territory of nuclear genomes will be explored.Publication The establishment of Central American migratory corridors and the biogeographic origins of seasonally dry tropical forests in Mexico(Frontiers Media S.A., 2014) Willis, Charles G.; Franzone, Brian; Xi, Zhenxiang; Davis, CharlesBiogeography and community ecology can mutually illuminate the formation of a regional species pool or biome. Here, we apply phylogenetic methods to a large and diverse plant clade, Malpighiaceae, to characterize the formation of its species pool in Mexico, and its occupancy of the seasonally dry tropical forest (SDTF) biome that occurs there. We find that the ~162 species of Mexican Malpighiaceae represent ~33 dispersals from South America beginning in the Eocene and continuing until the Pliocene (~46.4–3.8 Myr). Furthermore, dispersal rates between South America and Mexico show a significant six-fold increase during the mid-Miocene (~23.9 Myr). We hypothesize that this increase marked the availability of Central America as an important corridor for Neotropical plant migration. We additionally demonstrate that this high rate of dispersal contributed substantially more to the phylogenetic diversity of Malpighiaceae in Mexico than in situ diversification. Finally, we show that most lineages arrived in Mexico pre-adapted with regard to one key SDTF trait, total annual precipitation. In contrast, these lineages adapted to a second key trait, precipitation seasonality, in situ as mountain building in the region gave rise to the abiotic parameters of extant SDTF. The timing of this in situ adaptation to seasonal precipitation suggests that SDTF likely originated its modern characteristics by the late Oligocene, but was geographically more restricted until its expansion in the mid-Miocene. These results highlight the complex interplay of dispersal, adaptation, and in situ diversification in the formation of tropical biomes. Our results additionally demonstrate that these processes are not static, and their relevance can change markedly over evolutionary time. This has important implications for understanding the origin of SDTF in Mexico, but also for understanding the temporal and spatial origin of biomes and regional species pools more broadly.Publication Corrigendum to: The establishment of Central American migratory corridors and the biogeographic origins of seasonally dry tropical forests in Mexico(Frontiers Media S.A., 2015) Willis, Charles G.; Franzone, Brian; Xi, Zhenxiang; Davis, CharlesPublication Estimating phylogenetic trees from genome-scale data(Wiley-Blackwell, 2015) Liu, Liang; Xi, Zhenxiang; Wu, Shaoyuan; Davis, Charles; Edwards, ScottThe heterogeneity of signals in the genomes of diverse organisms poses challenges for traditional phylogenetic analysis. Phylogenetic methods known as “species tree” methods have been proposed to directly address one important source of gene tree heterogeneity, namely the incomplete lineage sorting that occurs when evolving lineages radiate rapidly, resulting in a diversity of gene trees from a single underlying species tree. Here we review theory and empirical examples that help clarify conflicts between species tree and concatenation methods, and misconceptions in the literature about the performance of species tree methods. Considering concatenation as a special case of the multispecies coalescent model helps explain differences in the behavior of the two methods on phylogenomic data sets. Recent work suggests that species tree methods are more robust than concatenation approaches to some of the classic challenges of phylogenetic analysis, including rapidly evolving sites in DNA sequences and long-branch attraction. We show that approaches, such as binning, designed to augment the signal in species tree analyses can distort the distribution of gene trees and are inconsistent. Computationally efficient species tree methods incorporating biological realism are a key to phylogenetic analysis of whole-genome data.Publication Massive Mitochondrial Gene Transfer in a Parasitic Flowering Plant Clade(Public Library of Science, 2013) Xi, Zhenxiang; Wang, Yuguo; Bradley, Robert K.; Sugumaran, M.; Marx, Christopher J; Rest, Joshua S.; Davis, CharlesRecent studies have suggested that plant genomes have undergone potentially rampant horizontal gene transfer (HGT), especially in the mitochondrial genome. Parasitic plants have provided the strongest evidence of HGT, which appears to be facilitated by the intimate physical association between the parasites and their hosts. A recent phylogenomic study demonstrated that in the holoparasite Rafflesia cantleyi (Rafflesiaceae), whose close relatives possess the world's largest flowers, about 2.1% of nuclear gene transcripts were likely acquired from its obligate host. Here, we used next-generation sequencing to obtain the 38 protein-coding and ribosomal RNA genes common to the mitochondrial genomes of angiosperms from R. cantleyi and five additional species, including two of its closest relatives and two host species. Strikingly, our phylogenetic analyses conservatively indicate that 24%–41% of these gene sequences show evidence of HGT in Rafflesiaceae, depending on the species. Most of these transgenic sequences possess intact reading frames and are actively transcribed, indicating that they are potentially functional. Additionally, some of these transgenes maintain synteny with their donor and recipient lineages, suggesting that native genes have likely been displaced via homologous recombination. Our study is the first to comprehensively assess the magnitude of HGT in plants involving a genome (i.e., mitochondria) and a species interaction (i.e., parasitism) where it has been hypothesized to be potentially rampant. Our results establish for the first time that, although the magnitude of HGT involving nuclear genes is appreciable in these parasitic plants, HGT involving mitochondrial genes is substantially higher. This may represent a more general pattern for other parasitic plant clades and perhaps more broadly for angiosperms.Publication Phylogeny of the Clusioid Clade (Malpighiales): Evidence from the Plastid and Mitochondrial Genomes(Botanical Society of America, 2011) Ruhfel, B; Bittrich, Volker; Bove, Claudia P.; Gustafsson, Mats H. G.; Philbrick, C. Thomas; Rutishauser, Rolf; Xi, Zhenxiang; Davis, CharlesPremise of the study: The clusioid clade includes five families (i.e., Bonnetiaceae, Calophyllaceae, Clusiaceae s.s., Hypericaceae, and Podostemaceae) represented by 94 genera and ∼1900 species. Species in this clade form a conspicuous element of tropical forests worldwide and are important in horticulture, timber production, and pharmacology. We conducted a taxon-rich multigene phylogenetic analysis of the clusioids to clarify phylogenetic relationships in this clade. Methods: We analyzed plastid (matK, ndhF, and rbcL) and mitochondrial (matR) nucleotide sequence data using parsimony, maximum likelihood, and Bayesian inference. Our combined data set included 194 species representing all major clusioid subclades, plus numerous species spanning the taxonomic, morphological, and biogeographic breadth of the clusioid clade. Key results: Our results indicate that Tovomita (Clusiaceae s.s.), Harungana and Hypericum (Hypericaceae), and Ledermanniella s.s. and Zeylanidium (Podostemaceae) are not monophyletic. In addition, we place four genera that have not been included in any previous molecular study: Ceratolacis, Diamantina, and Griffithella (Podostemaceae), and Santomasia (Hypericaceae). Finally, our results indicate that Lianthus, Santomasia, Thornea, and Triadenum can be safely merged into Hypericum (Hypericaceae). Conclusions: We present the first well-resolved, taxon-rich phylogeny of the clusioid clade. Taxon sampling and resolution within the clade are greatly improved compared to previous studies and provide a strong basis for improving the classification of the group. In addition, our phylogeny will form the foundation for our future work investigating the biogeography of tropical angiosperms that exhibit Gondwanan distributions.Publication Phylogenomics of the Flowering Plant Clade Malpighiales(2013-03-18) Xi, Zhenxiang; Davis, Charles Cavender; Bomblies, Kirsten; Edwards, Scott; Marx, ChristopherThe angiosperm order Malpighiales includes \(\sim 16,000\) species and constitutes up to 40% of the understory tree diversity in tropical rain forests. Despite remarkable progress in angiosperm phylogenetics during the last 20 years, relationships within Malpighiales have remained poorly resolved, possibly due to its rapid rise during the mid-Cretaceous. Using phylogenomic approaches, including analyses of 82 plastid genes from 58 species, we identified 12 new clades in Malpighiales and substantially increased resolution along the backbone (Chapter 1). This greatly improved phylogeny revealed a dynamic history of shifts in net species’ diversification rates across Malpighiales, with bursts of diversification noted in the Barbados cherries (Malpighiaceae), cocas (Erythroxylaceae), and passion flowers (Passifloraceae). We also found that commonly used a priori approaches for partitioning data in similar large-scale analyses, by gene or by codon position, performed poorly relative to the use of partitions identified a posteriori using a Bayesian mixture model. Another aspect of my thesis focused on investigating horizontal gene transfer (HGT) in Malpighiales. Recent studies have suggested that plant genomes have undergone potentially rampant HGT. Parasitic plants have provided the strongest evidence of HGT, which appears to be facilitated by the intimate physical association between the parasites and their hosts. Using phylogenomic approaches, we analyzed the nuclear transcriptome (Chapter 2) and mitochondrial genome (Chapter 3) of the holoparasite Rafflesiaceae, which represents an enigmatic subclade of Malpighiales. Our analyses show that several dozen actively transcribed nuclear genes, and as many as 34–47% of its mitochondrial gene sequences, show evidence of HGT depending on the species. Some of these HGTs appear to have maintained synteny with their donor and recipient lineages suggesting that vertically inherited genes have likely been displaced via homologous recombination, as is common in bacteria. Finally, our results establish for the first time that although the magnitude of HGT involving nuclear genes is appreciable in these parasitic plants, HGT involving mitochondrial genes is substantially higher. Moreover, the elevated rate of unidirectional host-to-parasite gene transfer raises the possibility that HGTs may provide a fitness benefit to Rafflesiaceae for maintaining these genes.Publication Horizontal transfer of expressed genes in a parasitic flowering plant(BioMed Central, 2012) Xi, Zhenxiang; Bradley, Robert K; Wurdack, Kenneth J; Wong, KM; Sugumaran, M; Bomblies, Kirsten; Rest, Joshua S; Davis, CharlesBackground: Recent studies have shown that plant genomes have potentially undergone rampant horizontal gene transfer (HGT). In plant parasitic systems HGT appears to be facilitated by the intimate physical association between the parasite and its host. HGT in these systems has been invoked when a DNA sequence obtained from a parasite is placed phylogenetically very near to its host rather than with its closest relatives. Studies of HGT in parasitic plants have relied largely on the fortuitous discovery of gene phylogenies that indicate HGT, and no broad systematic search for HGT has been undertaken in parasitic systems where it is most expected to occur. Results: We analyzed the transcriptomes of the holoparasite Rafflesia cantleyi Solms-Laubach and its obligate host Tetrastigma rafflesiae Miq. using phylogenomic approaches. Our analyses show that several dozen actively transcribed genes, most of which appear to be encoded in the nuclear genome, are likely of host origin. We also find that hundreds of vertically inherited genes (VGT) in this parasitic plant exhibit codon usage properties that are more similar to its host than to its closest relatives. Conclusions: Our results establish for the first time a substantive number of HGTs in a plant host-parasite system. The elevated rate of unidirectional host-to- parasite gene transfer raises the possibility that HGTs may provide a fitness benefit to Rafflesia for maintaining these genes. Finally, a similar convergence in codon usage of VGTs has been shown in microbes with high HGT rates, which may help to explain the increase of HGTs in these parasitic plants.