Person: Johnson, John
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Johnson
First Name
John
Name
Johnson, John
9 results
Search Results
Now showing 1 - 9 of 9
Publication A 1.9 Earth Radius Rocky Planet and the Discovery of a Non-Transiting Planet in the Kepler-20 System(American Astronomical Society, 2016) Buchhave, Lars A.; Dressing, Courtney D.; Dumusque, Xavier; Rice, Ken; Vanderburg, Andrew; Mortier, Annelies; Lopez-Morales, Mercedes; Lopez, Eric; Lundkvist, Mia S.; Kjeldsen, Hans; Affer, Laura; Bonomo, Aldo S.; Charbonneau, David; Cameron, Andrew Collier; Cosentino, Rosario; Figueira, Pedro; Fiorenzano, Aldo F. M.; Harutyunyan, Avet; Haywood, Raphaelle; Johnson, John; Latham, David; Lovis, Christophe; Malavolta, Luca; Mayor, Michel; Micela, Giusi; Molinari, Emilio; Motalebi, Fatemeh; Nascimbeni, Valerio; Pepe, Francesco; Phillips, David; Piotto, Giampaolo; Pollacco, Don; Queloz, Didier; Sasselov, Dimitar; Ségransan, Damien; Sozzetti, Alessandro; Udry, Stéphane; Watson, ChrisKepler-20 is a solar-type star (V = 12.5) hosting a compact system of five transiting planets, all packed within the orbital distance of Mercury in our own solar system. A transition from rocky to gaseous planets with a planetary transition radius of ~1.6 ${R}_{\oplus }$ has recently been proposed by several articles in the literature. Kepler-20b (${R}_{p}$ ~ 1.9 ${R}_{\oplus }$) has a size beyond this transition radius; however, previous mass measurements were not sufficiently precise to allow definite conclusions to be drawn regarding its composition. We present new mass measurements of three of the planets in the Kepler-20 system that are facilitated by 104 radial velocity measurements from the HARPS-N spectrograph and 30 archival Keck/HIRES observations, as well as an updated photometric analysis of the Kepler data and an asteroseismic analysis of the host star (${M}_{\star }$ = $0.948\pm 0.051$ ${M}_{\odot }$ and ${R}_{\star }$ = $0.964\pm 0.018$ ${R}_{\odot }$). Kepler-20b is a ${1.868}_{-0.034}^{+0.066}$ ${R}_{\oplus }$ planet in a 3.7 day period with a mass of ${9.70}_{-1.44}^{+1.41}$ ${M}_{\oplus }$, resulting in a mean density of ${8.2}_{-1.3}^{+1.5}$ ${\rm{g}}\,{\mathrm{cm}}^{-3}$, indicating a rocky composition with an iron-to-silicate ratio consistent with that of the Earth. This makes Kepler-20b the most massive planet with a rocky composition found to date. Furthermore, we report the discovery of an additional non-transiting planet with a minimum mass of ${19.96}_{-3.61}^{+3.08}$ ${M}_{\oplus }$ and an orbital period of ~34 days in the gap between Kepler-20f (P ~ 11 days) and Kepler-20d (P ~ 78 days).Publication A Disintegrating Minor Planet Transiting a White Dwarf(Springer Nature, 2015) Vanderburg, Andrew; Johnson, John; Rappaport, Saul; Bieryla, Allyson; Irwin, Jonathan; Lewis, John; Kipping, David; Brown, Warren; Dufour, Patrick; Ciardi, David R.; Angus, Ruth; Schaefer, Laura Kay; Latham, David; Charbonneau, David; Beichman, Charles; Eastman, Jason; McCrady, Nate; Wittenmyer, Robert A.; Wright, Jason T.White dwarfs are the end state of most stars, including the Sun, after they exhaust their nuclear fuel. Between 1/4 and 1/2 of white dwarfs have elements heavier than helium in their atmospheres1,2, even though these elements should rapidly settle into the stellar interiors unless they are occasionally replenished3–5. The abundance ratios of heavy elements in white dwarf atmospheres are similar to rocky bodies in the Solar system6,7. This and the existence of warm dusty debris disks8–13 around about 4% of white dwarfs14–16 suggest that rocky debris from white dwarf progenitors’ planetary systems occasionally pollute the stars’ atmospheres17. The total accreted mass can be comparable to that of large asteroids in the solar system1. However, the process of disrupting planetary material has not yet been observed. Here, we report observations of a white dwarf being transited by at least one and likely multiple disintegrating planetesimals with periods ranging from 4.5 hours to 4.9 hours. The strongest transit signals occur every 4.5 hours and exhibit varying depths up to 40% and asymmetric profiles, indicative of a small object with a cometary tail of dusty effluent material. The star hosts a dusty debris disk and the star’s spectrum shows prominent lines from heavy elements like magnesium, aluminium, silicon, calcium, iron, and nickel. This system provides evidence that heavy element pollution of white dwarfs can originate from disrupted rocky bodies such as asteroids and minor planets.Publication The HARPS-N Rocky Planet Search(EDP Sciences, 2015) Motalebi, F.; Udry, S.; Gillon, M.; Lovis, C.; Ségransan, D.; Buchhave, L. A.; Demory, B. O.; Malavolta, L.; Dressing, Courtney Danielle; Sasselov, Dimitar; Rice, K.; Charbonneau, David; Collier Cameron, A.; Latham, David; Molinari, E.; Pepe, F.; Affer, L.; Bonomo, A. S.; Cosentino, R.; Dumusque, X.; Figueira, P.; Fiorenzano, A. F. M.; Gettel, S.; Harutyunyan, A.; Haywood, Raphaelle; Johnson, John; Lopez, E.; Lopez-Morales, Maria; Mayor, M.; Micela, G.; Mortier, A.; Nascimbeni, V.; Philips, D.; Piotto, G.; Pollacco, D.; Queloz, D.; Sozzetti, A.; Vanderburg, A.; Watson, C. A.We know now from radial velocity surveys and transit space missions that planets only a few times more massive than our Earth are frequent around solar-type stars. Fundamental questions about their formation history, physical properties, internal structure, and atmosphere composition are, however, still to be solved. We present here the detection of a system of four low-mass planets around the bright (V = 5.5) and close-by (6.5 pc) star HD 219134. This is the first result of the Rocky Planet Search programme with HARPS-N on the Telescopio Nazionale Galileo in La Palma. The inner planet orbits the star in 3.0935 ± 0.0003 days, on a quasicircular orbit with a semi-major axis of 0.0382 ± 0.0003 AU. Spitzer observations allowed us to detect the transit of the planet in front of the star making HD 219134 b the nearest known transiting planet to date. From the amplitude of the radial velocity variation (2.25 ± 0.22 ms−1 ) and observed depth of the transit (359 ± 38 ppm), the planet mass and radius are estimated to be 4.36 ± 0.44 M⊕ and 1.606 ± 0.086 R⊕, leading to a mean density of 5.76 ± 1.09 g cm−3 , suggesting a rocky composition. One additional planet with minimum-mass of 2.78 ± 0.65 M⊕ moves on a close-in, quasi-circular orbit with a period of 6.767 ± 0.004 days. The third planet in the system has a period of 46.66 ± 0.08 days and a minimum-mass of 8.94 ± 1.13 M⊕, at 0.233 ± 0.002 AU from the star. Its eccentricity is 0.46 ± 0.11. The period of this planet is close to the rotational period of the star estimated from variations of activity indicators (42.3 ± 0.1 days). The planetary origin of the signal is, however, the preferred solution as no indication of variation at the corresponding frequency is observed for activity-sensitive parameters. Finally, a fourth additional longer-period planet of mass of 71 M⊕ orbits the star in 1842 days, on an eccentric orbit (e = 0.34 ± 0.17) at a distance of 2.56 AU.Publication Orbital Phase Variations of the Eccentric Giant Planet Hat-P-2b(IOP Publishing, 2013) Lewis, Nikole K.; Knutson, Heather A.; Showman, Adam P.; Cowan, Nicolas B.; Laughlin, Gregory; Burrows, Adam; Deming, Drake; Crepp, Justin R.; Mighell, Kenneth J.; Agol, Eric; Bakos, Gáspár Á.; Charbonneau, David; Désert, Jean-Michel; Fischer, Debra A.; Fortney, Jonathan J.; Hartman, Joel D.; Hinkley, Sasha; Howard, Andrew W.; Johnson, John; Kao, Melodie; Langton, Jonathan; Marcy, Geoffrey W.We present the first secondary eclipse and phase curve observations for the highly eccentric hot Jupiter HAT-P-2b in the 3.6, 4.5, 5.8, and 8.0 μm bands of the Spitzer Space Telescope. The 3.6 and 4.5 μm data sets span an entire orbital period of HAT-P-2b (P = 5.6334729 d), making them the longest continuous phase curve observations obtained to date and the first full-orbit observations of a planet with an eccentricity exceeding 0.2. We present an improved non-parametric method for removing the intrapixel sensitivity variations in Spitzer data at 3.6 and 4.5 μm that robustly maps position-dependent flux variations. We find that the peak in planetary flux occurs at 4.39 ± 0.28, 5.84 ± 0.39, and 4.68 ± 0.37 hr after periapse passage with corresponding maxima in the planet/star flux ratio of 0.1138% ± 0.0089%, 0.1162% ± 0.0080%, and 0.1888% ± 0.0072% in the 3.6, 4.5, and 8.0 μm bands, respectively. Our measured secondary eclipse depths of 0.0996% ± 0.0072%, 0.1031% ± 0.0061%, $0.071\%^{+0.029\%}_{-0.013\%}$, and 0.1392% ± 0.0095% in the 3.6, 4.5, 5.8, and 8.0 μm bands, respectively, indicate that the planet cools significantly from its peak temperature before we measure the dayside flux during secondary eclipse. We compare our measured secondary eclipse depths to the predictions from a one-dimensional radiative transfer model, which suggests the possible presence of a transient day side inversion in HAT-P-2b's atmosphere near periapse. We also derive improved estimates for the system parameters, including its mass, radius, and orbital ephemeris. Our simultaneous fit to the transit, secondary eclipse, and radial velocity data allows us to determine the eccentricity (e = 0.50910 ± 0.00048) and argument of periapse (ω = 188fdg09 ± 0fdg39) of HAT-P-2b's orbit with a greater precision than has been achieved for any other eccentric extrasolar planet. We also find evidence for a long-term linear trend in the radial velocity data. This trend suggests the presence of another substellar companion in the HAT-P-2 system, which could have caused HAT-P-2b to migrate inward to its present-day orbit via the Kozai mechanism.Publication The Orbit and Mass of the Third Planet in the Kepler-56 System(American Astronomical Society, 2016) Otor, Oderah Justin; Montet, Benjamin T.; Johnson, John; Charbonneau, David; Collier-Cameron, Andrew; Howard, Andrew W.; Isaacson, Howard; Latham, David; Lopez-Morales, Mercedes; Lovis, Christophe; Mayor, Michel; Micela, Giusi; Molinari, Emilio; Pepe, Francesco; Piotto, Giampaolo; Phillips, David; Queloz, Didier; Rice, Ken; Sasselov, Dimitar; Ségransan, Damien; Sozzetti, Alessandro; Udry, Stéphane; Watson, ChrisWhile the vast majority of multiple-planet systems have orbital angular momentum axes that align with the spin axis of their host star, Kepler-56 is an exception: its two transiting planets are coplanar yet misaligned by at least 40 degrees with respect to the rotation axis of their host star. Additional follow-up observations of Kepler-56 suggest the presence of a massive, non-transiting companion that may help explain this misalignment. We model the transit data along with Keck/HIRES and HARPSN radial velocity data to update the masses of the two transiting planets and infer the physical properties of the third, non-transiting planet. We employ a Markov Chain Monte Carlo sampler to calculate the best-fitting orbital parameters and their uncertainties for each planet. We find the outer planet has a period of 1002 ± 5 days and minimum mass of 5.61 ± 0.38 MJup. We also place a 95% upper limit of 0.80 m s−1 yr−1 on long-term trends caused by additional, more distant companions.Publication Characterizing K2 Planet Discoveries: A Super-Earth Transiting the Bright K Dwarf Hip 116454(IOP Publishing, 2015) Vanderburg, Andrew; Montet, Benjamin T.; Johnson, John; Buchhave, Lars A.; Zeng, Li; Pepe, Francesco; Cameron, Andrew Collier; Latham, David; Molinari, Emilio; Udry, Stéphane; Lovis, Christophe; Matthews, Jaymie M.; Cameron, Chris; Law, Nicholas; Bowler, Brendan P.; Angus, Ruth; Baranec, Christoph; Bieryla, Allyson; Boschin, Walter; Charbonneau, David; Cosentino, Rosario; Dumusque, Xavier; Figueira, Pedro; Guenther, David B.; Harutyunyan, Avet; Hellier, Coel; Kuschnig, Rainer; Lopez-Morales, Mercedes; Mayor, Michel; Micela, Giusi; Moffat, Anthony F. J.; Pedani, Marco; Phillips, David; Piotto, Giampaolo; Pollacco, Don; Queloz, Didier; Rice, Ken; Riddle, Reed; Rowe, Jason F.; Rucinski, Slavek M.; Sasselov, Dimitar; Ségransan, Damien; Sozzetti, Alessandro; Szentgyorgyi, Andrew; Watson, Chris; Weiss, Werner W.We report the first planet discovery from the two-wheeled Kepler (K2) mission: HIP 116454 b. The host star HIP 116454 is a bright (V = 10.1, K = 8.0) K1 dwarf with high proper motion and a parallax-based distance of 55.2 ± 5.4 pc. Based on high-resolution optical spectroscopy, we find that the host star is metal-poor with [Fe/H] = −0.16±0.08 and has a radius R = 0.716 ± 0.024 R and mass M = 0.775±0.027 M. The star was observed by the Kepler spacecraft during its Two-Wheeled Concept Engineering Test in 2014 February. During the 9 days of observations, K2 observed a single transit event. Using a new K2 photometric analysis technique, we are able to correct small telescope drifts and recover the observed transit at high confidence, corresponding to a planetary radius of Rp = 2.53 ± 0.18 R⊕. Radial velocity observations with the HARPS-N spectrograph reveal a 11.82 ± 1.33 M⊕ planet in a 9.1 day orbit, consistent with the transit depth, duration, and ephemeris. Follow-up photometric measurements from the MOST satellite confirm the transit observed in the K2 photometry and provide a refined ephemeris, making HIP 116454 b amenable for future follow-up observations of this latest addition to the growing population of transiting super-Earths around nearby, bright stars.Publication Transiting Exoplanet Survey Satellite(SPIE-Intl Soc Optical Eng, 2014) Ricker, George R.; Winn, Joshua N.; Vanderspek, Roland; Latham, David; Bakos, Gáspár Á.; Bean, Jacob L.; Berta-Thompson, Zachory K.; Brown, Timothy M.; Buchhave, Lars; Butler, Nathaniel R.; Butler, R. Paul; Chaplin, William J.; Charbonneau, David; Christensen-Dalsgaard, Jørgen; Clampin, Mark; Deming, Drake; Doty, John; De Lee, Nathan; Dressing, Courtney Danielle; Dunham, Edward W.; Endl, Michael; Fressin, Francois; Ge, Jian; Henning, Thomas; Holman, Matthew; Howard, Andrew W.; Ida, Shigeru; Jenkins, Jon M.; Jernigan, Garrett; Johnson, John; Kaltenegger, Lisa; Kawai, Nobuyuki; Kjeldsen, Hans; Laughlin, Gregory; Levine, Alan M.; Lin, Douglas; Lissauer, Jack J.; MacQueen, Phillip; Marcy, Geoffrey; McCullough, Peter R.; Morton, Timothy D.; Narita, Norio; Paegert, Martin; Palle, Enric; Pepe, Francesco; Pepper, Joshua; Quirrenbach, Andreas; Rinehart, Stephen A.; Sasselov, Dimitar; Sato, Bun’ei; Seager, Sara; Sozzetti, Alessandro; Stassun, Keivan G.; Sullivan, Peter; Szentgyorgyi, Andrew; Torres, Guillermo; Udry, Stephane; Villasenor, JoelThe Transiting Exoplanet Survey Satellite (TESS) will search for planets transiting bright and nearby stars. TESS has been selected by NASA for launch in 2017 as an Astrophysics Explorer mission. The spacecraft will be placed into a highly elliptical 13.7-day orbit around the Earth. During its 2-year mission, TESS will employ four wide-field optical charge-coupled device cameras to monitor at least 200,000 main-sequence dwarf stars with IC≈4−13IC≈4−13 for temporary drops in brightness caused by planetary transits. Each star will be observed for an interval ranging from 1 month to 1 year, depending mainly on the star’s ecliptic latitude. The longest observing intervals will be for stars near the ecliptic poles, which are the optimal locations for follow-up observations with the James Webb Space Telescope. Brightness measurements of preselected target stars will be recorded every 2 min, and full frame images will be recorded every 30 min. TESS stars will be 10 to 100 times brighter than those surveyed by the pioneering Kepler mission. This will make TESS planets easier to characterize with follow-up observations. TESS is expected to find more than a thousand planets smaller than Neptune, including dozens that are comparable in size to the Earth. Public data releases will occur every 4 months, inviting immediate community-wide efforts to study the new planets. The TESS legacy will be a catalog of the nearest and brightest stars hosting transiting planets, which will endure as highly favorable targets for detailed investigations.Publication The Mass of Kepler-93b and the Composition of Terrestrial Planets(IOP Publishing, 2015) Dressing, Courtney Danielle; Charbonneau, David; Dumusque, Xavier; Gettel, Sara; Pepe, Francesco; Collier Cameron, Andrew; Latham, David; Molinari, Emilio; Udry, Stéphane; Affer, Laura; Bonomo, Aldo S.; Buchhave, Lars A.; Cosentino, Rosario; Figueira, Pedro; Fiorenzano, Aldo F. M.; Harutyunyan, Avet; Haywood, Raphaelle; Johnson, John; Lopez-Morales, Mercedes; Lovis, Christophe; Malavolta, Luca; Mayor, Michel; Micela, Giusi; Motalebi, Fatemeh; Nascimbeni, Valerio; Phillips, David; Piotto, Giampaolo; Pollacco, Don; Queloz, Didier; Rice, Ken; Sasselov, Dimitar; Ségransan, Damien; Sozzetti, Alessandro; Szentgyorgyi, Andrew; Watson, ChrisKepler-93b is a 1.478 ± 0.019 R⊕ planet with a 4.7 day period around a bright (V = 10.2), astroseismically characterized host star with a mass of 0.911 ± 0.033 M and a radius of 0.919 ± 0.011 R. Based on 86 radial velocity observations obtained with the HARPS-N spectrograph on the Telescopio Nazionale Galileo and 32 archival Keck/HIRES observations, we present a precise mass estimate of 4.02±0.68 M⊕. The corresponding high density of 6.88±1.18 g cm−3 is consistent with a rocky composition of primarily iron and magnesium silicate. We compare Kepler-93b to other dense planets with well-constrained parameters and find that between 1 and 6 M⊕, all dense planets including the Earth and Venus are well-described by the same fixed ratio of iron to magnesium silicate. There are as of yet no examples of such planets with masses > 6 M⊕. All known planets in this mass regime have lower densities requiring significant fractions of volatiles or H/He gas. We also constrain the mass and period of the outer companion in the Kepler-93 system from the long-term radial velocity trend and archival adaptive optics images. As the sample of dense planets with well-constrained masses and radii continues to grow, we will be able to test whether the fixed compositional model found for the seven dense planets considered in this paper extends to the full population of 1–6 M⊕ planets.Publication The Kepler-454 System: A Small, Not-rocky Inner Planet, a Jovian World, and a Distant Companion(American Astronomical Society, 2016) Gettel, Sara; Charbonneau, David; Dressing, Courtney D.; Buchhave, Lars A.; Dumusque, Xavier; Vanderburg, Andrew; Bonomo, Aldo S.; Malavolta, Luca; Pepe, Francesco; Cameron, Andrew Collier; Latham, David; Udry, Stéphane; Marcy, Geoffrey W.; Isaacson, Howard; Howard, Andrew W.; Davies, Guy R.; Aguirre, Victor Silva; Kjeldsen, Hans; Bedding, Timothy R.; Lopez, Eric; Affer, Laura; Cosentino, Rosario; Figueira, Pedro; Fiorenzano, Aldo F. M.; Harutyunyan, Avet; Johnson, John; Lopez-Morales, Mercedes; Lovis, Christophe; Mayor, Michel; Micela, Giusi; Molinari, Emilio; Motalebi, Fatemeh; Phillips, David; Piotto, Giampaolo; Queloz, Didier; Rice, Ken; Sasselov, Dimitar; Ségransan, Damien; Sozzetti, Alessandro; Watson, Chris; Basu, Sarbani; Campante, Tiago L.; Christensen-Dalsgaard, Jørgen; Kawaler, Steven D.; Metcalfe, Travis S.; Handberg, Rasmus; Lund, Mikkel N.; Lundkvist, Mia S.; Huber, Daniel; Chaplin, William J.Kepler-454 (KOI-273) is a relatively bright (V = 11.69 mag), Sun-like star that hosts a transiting planet candidate in a 10.6 day orbit. From spectroscopy, we estimate the stellar temperature to be 5687 ± 50 K, its metallicity to be [m/H] = 0.32 ± 0.08, and the projected rotational velocity to be v sin i < 2.4 km s−1. We combine these values with a study of the asteroseismic frequencies from short cadence Kepler data to estimate the stellar mass to be ${1.028}_{-0.03}^{+0.04}{M}_{\odot }$, the radius to be 1.066 ± 0.012 R⊙, and the age to be ${5.25}_{-1.39}^{+1.41}$ Gyr. We estimate the radius of the 10.6 day planet as 2.37 ± 0.13 R⊕. Using 63 radial velocity observations obtained with the HARPS-N spectrograph on the Telescopio Nazionale Galileo and 36 observations made with the HIRES spectrograph at the Keck Observatory, we measure the mass of this planet to be 6.8 ± 1.4 M⊕. We also detect two additional non-transiting companions, a planet with a minimum mass of 4.46 ± 0.12 MJ in a nearly circular 524 day orbit and a massive companion with a period >10 years and mass >12.1 MJ. The 12 exoplanets with radii <2.7 R⊕ and precise mass measurements appear to fall into two populations, with those <1.6 R⊕ following an Earth-like composition curve and larger planets requiring a significant fraction of volatiles. With a density of 2.76 ± 0.73 g cm−3, Kepler-454b lies near the mass transition between these two populations and requires the presence of volatiles and/or H/He gas.