Person:
Wylie, C

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Wylie

First Name

C

Name

Wylie, C

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Publication
    A biophysical protein folding model accounts for most mutational fitness effects in viruses
    (Proceedings of the National Academy of Sciences, 2011) Wylie, C; Shakhnovich, Eugene
    Fitness effects of mutations fall on a continuum ranging from lethal to deleterious to beneficial. The distribution of fitness effects (DFE) among random mutations is an essential component of every evolutionary model and a mathematical portrait of robustness. Recent experiments on five viral species all revealed a characteristic bimodal-shaped DFE featuring peaks at neutrality and lethality. However, the phenotypic causes underlying observed fitness effects are still unknown and presumably, are thought to vary unpredictably from one mutation to another. By combining population genetics simulations with a simple biophysical protein folding model, we show that protein thermodynamic stability accounts for a large fraction of observed mutational effects. We assume that moderately destabilizing mutations inflict a fitness penalty proportional to the reduction in folded protein, which depends continuously on folding free energy (ΔG). Most mutations in our model affect fitness by altering ΔG, whereas based on simple estimates, ∼10% abolish activity and are unconditionally lethal. Mutations pushing ΔG > 0 are also considered lethal. Contrary to neutral network theory, we find that, in mutation/selection/drift steady state, high mutation rates (m) lead to less stable proteins and a more dispersed DFE (i.e., less mutational robustness). Small population size (N) also decreases stability and robustness. In our model, a continuum of nonlethal mutations reduces fitness by ∼2% on average, whereas ∼10–35% of mutations are lethal depending on N and m. Compensatory mutations are common in small populations with high mutation rates. More broadly, we conclude that interplay between biophysical and population genetic forces shapes the DFE.
  • Thumbnail Image
    Publication
    Mutation Induced Extinction in Finite Populations: Lethal Mutagenesis and Lethal Isolation
    (Public Library of Science, 2012) Wylie, C; Shakhnovich, Eugene
    Reproduction is inherently risky, in part because genomic replication can introduce new mutations that are usually deleterious toward fitness. This risk is especially severe for organisms whose genomes replicate “semi-conservatively,” e.g. viruses and bacteria, where no master copy of the genome is preserved. Lethal mutagenesis refers to extinction of populations due to an unbearably high mutation rate (U), and is important both theoretically and clinically, where drugs can extinguish pathogens by increasing their mutation rate. Previous theoretical models of lethal mutagenesis assume infinite population size (N). However, in addition to high U, small N can accelerate extinction by strengthening genetic drift and relaxing selection. Here, we examine how the time until extinction depends jointly on N and U. We first analytically compute the mean time until extinction (τ) in a simplistic model where all mutations are either lethal or neutral. The solution motivates the definition of two distinct regimes: a survival phase and an extinction phase, which differ dramatically in both how τ scales with N and in the coefficient of variation in time until extinction. Next, we perform stochastic population-genetics simulations on a realistic fitness landscape that both (i) features an epistatic distribution of fitness effects that agrees with experimental data on viruses and (ii) is based on the biophysics of protein folding. More specifically, we assume that mutations inflict fitness penalties proportional to the extent that they unfold proteins. We find that decreasing N can cause phase transition-like behavior from survival to extinction, which motivates the concept of “lethal isolation.” Furthermore, we find that lethal mutagenesis and lethal isolation interact synergistically, which may have clinical implications for treating infections. Broadly, we conclude that stably folded proteins are only possible in ecological settings that support sufficiently large populations.