Person: Murn, Jernej
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Murn
First Name
Jernej
Name
Murn, Jernej
2 results
Search Results
Now showing 1 - 2 of 2
Publication Rapid neurogenesis through transcriptional activation in human stem cells(Blackwell Publishing Ltd, 2014) Busskamp, Volker; Lewis, Nathan E; Guye, Patrick; Ng, Alex HM; Shipman, Seth; Byrne, Susan M; Sanjana, Neville E; Murn, Jernej; Li, Yinqing; Li, Shangzhong; Stadler, Michael; Weiss, Ron; Church, GeorgeAdvances in cellular reprogramming and stem cell differentiation now enable ex vivo studies of human neuronal differentiation. However, it remains challenging to elucidate the underlying regulatory programs because differentiation protocols are laborious and often result in low neuron yields. Here, we overexpressed two Neurogenin transcription factors in human-induced pluripotent stem cells and obtained neurons with bipolar morphology in 4 days, at greater than 90% purity. The high purity enabled mRNA and microRNA expression profiling during neurogenesis, thus revealing the genetic programs involved in the rapid transition from stem cell to neuron. The resulting cells exhibited transcriptional, morphological and functional signatures of differentiated neurons, with greatest transcriptional similarity to prenatal human brain samples. Our analysis revealed a network of key transcription factors and microRNAs that promoted loss of pluripotency and rapid neurogenesis via progenitor states. Perturbations of key transcription factors affected homogeneity and phenotypic properties of the resulting neurons, suggesting that a systems-level view of the molecular biology of differentiation may guide subsequent manipulation of human stem cells to rapidly obtain diverse neuronal types.Publication The histone chaperone CAF-1 safeguards somatic cell identity(2016) Cheloufi, Sihem; Elling, Ulrich; Hopfgartner, Barbara; Jung, Lucy; Murn, Jernej; Ninova, Maria; Hubmann, Maria; Badeaux, Aimee; Ang, Cheen Euong; Tenen, Danielle; Wesche, Daniel J; Abazova, Nadezhda; Hogue, Max; Tasdemir, Nilgun; Brumbaugh, Justin; Rathert, Philipp; Jude, Julian; Ferrari, Francesco; Blanco, Andres; Fellner, Michaela; Wenzel, Daniel; Zinner, Marietta; Vidal, Simon E; Bell, Oliver; Stadtfeld, Matthias; Chang, Howard Y.; Almouzni, Genevieve; Lowe, Scott W; Rinn, John; Wernig, Marius; Aravin, Alexei; Shi, Yang; Park, Peter; Penninger, Josef M; Zuber, Johannes; Hochedlinger, KonradCellular differentiation involves profound remodeling of chromatic landscapes, yet the mechanisms by which somatic cell identity is subsequently maintained remain incompletely understood. To further elucidate regulatory pathways that safeguard the somatic state, we performed two comprehensive RNAi screens targeting chromatin factors during transcription factor-mediated reprogramming of mouse fibroblasts to induced pluripotent stem cells (iPSCs). Remarkably, subunits of the chromatin assembly factor-1 (CAF-1) complex emerged as the most prominent hits from both screens, followed by modulators of lysine sumoylation and heterochromatin maintenance. Optimal modulation of both CAF-1 and transcription factor levels increased reprogramming efficiency by several orders of magnitude and facilitated iPSC formation in as little as 4 days. Mechanistically, CAF-1 suppression led to a more accessible chromatin structure at enhancer elements early during reprogramming. These changes were accompanied by a decrease in somatic heterochromatin domains, increased binding of Sox2 to pluripotency-specific targets and activation of associated genes. Notably, suppression of CAF-1 also enhanced the direct conversion of B cells into macrophages and fibroblasts into neurons. Together, our findings reveal the histone chaperone CAF-1 as a novel regulator of somatic cell identity during transcription factor-induced cell fate transitions and provide a potential strategy to modulate cellular plasticity in a regenerative setting.