Person: Lawrence, Joy
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Lawrence
First Name
Joy
Name
Lawrence, Joy
4 results
Search Results
Now showing 1 - 4 of 4
Publication Inhaled ambient-level traffic-derived particulates decrease cardiac vagal influence and baroreflexes and increase arrhythmia in a rat model of metabolic syndrome(BioMed Central, 2017) Carll, Alex P.; Crespo, Samir M.; Filho, Mauricio S.; Zati, Douglas H.; Coull, Brent; Diaz, Edgar A.; Raimundo, Rodrigo D.; Jaeger, Thomas N. G.; Ricci-Vitor, Ana Laura; Papapostolou, Vasileios; Lawrence, Joy; Garner, David M.; Perry, Brigham S.; Harkema, Jack R.; Godleski, JohnBackground: Epidemiological studies have linked exposures to ambient fine particulate matter (PM2.5) and traffic with autonomic nervous system imbalance (ANS) and cardiac pathophysiology, especially in individuals with preexisting disease. It is unclear whether metabolic syndrome (MetS) increases susceptibility to the effects of PM2.5. We hypothesized that exposure to traffic-derived primary and secondary organic aerosols (P + SOA) at ambient levels would cause autonomic and cardiovascular dysfunction in rats exhibiting features of MetS. Male Sprague Dawley (SD) rats were fed a high-fructose diet (HFrD) to induce MetS, and exposed to P + SOA (20.4 ± 0.9 μg/m3) for 12 days with time-matched comparison to filtered-air (FA) exposed MetS rats; normal diet (ND) SD rats were separately exposed to FA or P + SOA (56.3 ± 1.2 μg/m3). Results: In MetS rats, P + SOA exposure decreased HRV, QTc, PR, and expiratory time overall (mean effect across the entirety of exposure), increased breathing rate overall, decreased baroreflex sensitivity (BRS) on three exposure days, and increased spontaneous atrioventricular (AV) block Mobitz Type II arrhythmia on exposure day 4 relative to FA-exposed animals receiving the same diet. Among ND rats, P + SOA decreased HRV only on day 1 and did not significantly alter BRS despite overall hypertensive responses relative to FA. Correlations between HRV, ECG, BRS, and breathing parameters suggested a role for autonomic imbalance in the pathophysiologic effects of P + SOA among MetS rats. Autonomic cardiovascular responses to P + SOA at ambient PM2.5 levels were pronounced among MetS rats and indicated blunted vagal influence over cardiovascular physiology. Conclusions: Results support epidemiologic findings that MetS increases susceptibility to the adverse cardiac effects of ambient-level PM2.5, potentially through ANS imbalance. Electronic supplementary material The online version of this article (doi:10.1186/s12989-017-0196-2) contains supplementary material, which is available to authorized users.Publication Mechanisms of Inhaled Fine Particulate Air Pollution–induced Arterial Blood Pressure Changes(National Institute of Environmental Health Sciences, 2008) Bartoli, Carlo R.; Wellenius, Gregory A.; Diaz, Edgar; Lawrence, Joy; Coull, Brent; Akiyama, Ichiro; Lee, Lani M.; Okabe, Kazunori; Verrier, Richard; Godleski, JohnBackground: Epidemiologic studies suggest a positive association between fine particulate matter and arterial blood pressure, but the results have been inconsistent. Objectives: We investigated the effect of ambient particles on systemic hemodynamics during a 5-hr exposure to concentrated ambient air particles (CAPs) or filtered air (FA) in conscious canines. Methods: Thirteen dogs were repeatedly exposed via permanent tracheostomy to CAPs (358.1 ± 306.7 μg/m\(^3\), mean ± SD) or FA in a crossover protocol (55 CAPs days, 63 FA days). Femoral artery blood pressure was monitored continuously via implanted telemetry devices. We measured baroreceptor reflex sensitivity before and after exposure in a subset of these experiments (n = 10 dogs, 19 CAPs days, 20 FA days). In additional experiments, we administered α-adrenergic blockade before exposure (n = 8 dogs, 16 CAPs days, 15 FA days). Blood pressure, heart rate, rate–pressure product, and baroreceptor reflex sensitivity responses were compared using linear mixed-effects models. Results: CAPs exposure increased systolic blood pressure (2.7 ± 1.0 mmHg, p = 0.006), diastolic blood pressure (4.1 ± 0.8 mmHg; p < 0.001), mean arterial pressure (3.7 ± 0.8 mmHg; p < 0.001), heart rate (1.6 ± 0.5 bpm; p < 0.001), and rate–pressure product (539 ± 110 bpm × mmHg; p < 0.001), and decreased pulse pressure (−1.7 ± 0.7 mmHg, p = 0.02). These changes were accompanied by a 20 ± 6 msec/mmHg (p = 0.005) increase in baroreceptor reflex sensitivity after CAPs versus FA. After α-adrenergic blockade, responses to CAPs and FA no longer differed significantly. Conclusions: Controlled exposure to ambient particles elevates arterial blood pressure. Increased peripheral vascular resistance may mediate these changes, whereas increased baroreceptor reflex sensitivity may compensate for particle-induced alterations in blood pressure.Publication Concentrated Ambient Particles Alter Myocardial Blood Flow During Acute Ischemia in Conscious Canines(National Institute of Environmental Health Sciences, 2008) Bartoli, Carlo R.; Wellenius, Gregory A.; Coull, Brent; Akiyama, Ichiro; Diaz, Edgar; Lawrence, Joy; Okabe, Kazunori; Verrier, Richard; Godleski, JohnBackground: Experimental and observational studies have demonstrated that short-term exposure to ambient particulate matter (PM) exacerbates myocardial ischemia. Objectives: We conducted this study to investigate the effects of concentrated ambient particles (CAPs) on myocardial blood flow during myocardial ischemia in chronically instrumented conscious canines. Methods: Eleven canines were instrumented with a balloon occluder around the left anterior descending coronary artery and catheters for determination of myocardial blood flow using fluorescent microspheres. Telemetric electrocardiographic and blood pressure monitoring was available for four of these animals. After recovery, we exposed animals by inhalation to 5 hr of either filtered air or CAPs (mean concentration ± SD, 349.0 ± 282.6 μg/m\(^{3}\)) in a crossover protocol. We determined myocardial blood flow during a 5-min coronary artery occlusion immediately after each exposure. Data were analyzed using mixed models for repeated measures. The primary analysis was based on four canines that completed the protocol. Results: CAPs exposure decreased total myocardial blood flow during coronary artery occlusion by 0.12 mL/min/g (p < 0.001) and was accompanied by a 13% (p < 0.001) increase in coronary vascular resistance. Rate–pressure product, an index of myocardial oxygen demand, did not differ by exposure (p = 0.90). CAPs effects on myocardial blood flow were significantly more pronounced in myocardium within or near the ischemic zone versus more remote myocardium (p interaction < 0.001). Conclusions: These results suggest that PM exacerbates myocardial ischemia by increased coronary vascular resistance and decreased myocardial perfusion. Further studies are needed to elucidate the mechanism of these effects.Publication Rapid Increases in the Steady-state Concentration of Reactive Oxygen Species in the Lungs and Heart After Particulate Air Pollution Inhalation.(The National Institute of Environmental Health Sciences, 2002) Gurgueira, Sonia A; Lawrence, Joy; Coull, Brent; Murthy, G G Krishna; González-Flecha, BeatrizIn vitro studies suggest that reactive oxygen species contribute to the cardiopulmonary toxicity of particulate air pollution. To evaluate the ability of particulate air pollution to promote oxidative stress and tissue damage in vivo, we studied a rat model of short-term exposure to concentrated ambient particles (CAPs). We exposed adult Sprague-Dawley rats to either CAPs aerosols (group 1; average CAPs mass concentration, 300 +/- 60 micro g/m3) or filtered air (sham controls) for periods of 1-5 hr. Rats breathing CAPs aerosols for 5 hr showed significant oxidative stress, determined as in situ chemiluminescence in the lung [group 1, 41 +/- 4; sham, 24 +/- 1 counts per second (cps)/cm2] and heart (group 1, 45 +/- 4; sham, 24 +/- 2 cps/cm2) but not liver (group 1, 10 +/- 3; sham, 13 +/- 3 cps/cm2). Increases in oxidant levels were also triggered by highly toxic residual oil fly ash particles (lung chemiluminescence, 90 +/- 10 cps/cm2; heart chemiluminescence, 50 +/- 3 cps/cm2) but not by particle-free air or by inert carbon black aerosols (control particles). Increases in chemiluminescence showed strong associations with the CAPs content of iron, manganese, copper, and zinc in the lung and with Fe, aluminum, silicon, and titanium in the heart. The oxidant stress imposed by 5-hr exposure to CAPs was associated with slight but significant increases in the lung and heart water content (approximately 5% in both tissues, p < 0.05) and with increased serum levels of lactate dehydrogenase (approximately 80%), indicating mild damage to both tissues. Strikingly, CAPs inhalation also led to tissue-specific increases in the activities of the antioxidant enzymes superoxide dismutase and catalase, suggesting that episodes of increased particulate air pollution not only have potential for oxidant injurious effects but may also trigger adaptive responses.