Person:
Guilinger, John P.

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Guilinger

First Name

John P.

Name

Guilinger, John P.

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Publication
    High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity
    (2013) Pattanayak, Vikram; Lin, Steven; Guilinger, John P.; Ma, Enbo; Doudna, Jennifer A.; Liu, David
    The RNA-programmable Cas9 endonuclease cleaves double-stranded DNA at sites complementary to a 20-base-pair guide RNA. The Cas9 system has been used to modify genomes in multiple cells and organisms, demonstrating its potential as a facile genome-engineering tool. We used in vitro selection and high-throughput sequencing to determine the propensity of eight Cas9:guide RNA complexes to cleave each of 10^12 potential off-target DNA sequences. The selection results predicted five off-target sites in the human genome that were confirmed to undergo genome cleavage in HEK293T cells upon expression of one of two Cas9:guide RNA complexes. In contrast to previous models, our results show that Cas9:guide RNA specificity extends past a 7- to 12-base pair seed sequence. Our results also suggest a tradeoff between activity and specificity both in vitro and in cells as a shorter, less-active guide RNA is more specific then a longer, more-active guide RNA. High concentrations of Cas9:guide RNA complexes can cleave off-target sites containing mutations near or within the PAM that are not cleaved when enzyme concentrations are limiting.
  • Thumbnail Image
    Publication
    Profiling and Improving the Specificity of Site-Specific Nucleases
    (2014-06-06) Guilinger, John P.; Liu, David Ruchien; Saghatelian, Alan; D'souza, Victoria; Gaudet, Rachelle
    Programmable site-specific endonucleases are useful tools for genome editing and may lead to novel therapeutics to treat genetic diseases. TALENs can be designed to cleave chosen DNA sequences. To better understand TALEN specificity and engineer TALENs with improved specificity, we profiled 30 unique TALENs with varying target sites, array length, and domain sequences for their ability to cleave any of 1012 potential off-target DNA sequences using in vitro selection and high-throughput sequencing. Computational analysis of the selection results predicted 76 off-target substrates in the human genome, 16 of which were accessible and modified by TALENs in human cells. The results collectively suggest that (i) TALE repeats bind DNA relatively independently; (ii) longer TALENs are more tolerant of mismatches, yet are more specific in a genomic context; and (iii) excessive DNA-binding energy can lead to reduced TALEN specificity in cells. We engineered a TALEN variant, Q3, that exhibits equal on-target cleavage activity but 10-fold lower average off-target activity in human cells. Our results demonstrate that identifying and mutating residues that contribute to non-specific DNA-binding can yield genome engineering agents with improved DNA specificities.