Person:
Tang, Nancy Karen

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Tang

First Name

Nancy Karen

Name

Tang, Nancy Karen

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Publication
    Accessing Developmental Information of Fossil Hominin Teeth Using New Synchrotron Microtomography-Based Visualization Techniques of Dental Surfaces and Interfaces
    (Public Library of Science, 2015) Le Cabec, Adeline; Tang, Nancy Karen; Tafforeau, Paul
    Quantification of dental long-period growth lines (Retzius lines in enamel and Andresen lines in dentine) and matching of stress patterns (internal accentuated lines and hypoplasias) are used in determining crown formation time and age at death in juvenile fossil hominins. They yield the chronology employed for inferences of life history. Synchrotron virtual histology has been demonstrated as a non-destructive alternative to conventional invasive approaches. Nevertheless, fossil teeth are sometimes poorly preserved or physically inaccessible, preventing observation of the external expression of incremental lines (perikymata and periradicular bands). Here we present a new approach combining synchrotron virtual histology and high quality three-dimensional rendering of dental surfaces and internal interfaces. We illustrate this approach with seventeen permanent fossil hominin teeth. The outer enamel surface and enamel-dentine junction (EDJ) were segmented by capturing the phase contrast fringes at the structural interfaces. Three-dimensional models were rendered with Phong’s algorithm, and a combination of directional colored lights to enhance surface topography and the pattern of subtle variations in tissue density. The process reveals perikymata and linear enamel hypoplasias on the entire crown surface, including unerupted teeth. Using this method, highly detailed stress patterns at the EDJ allow precise matching of teeth within an individual’s dentition when virtual histology is not sufficient. We highlight that taphonomical altered enamel can in particular cases yield artificial subdivisions of perikymata when imaged using X-ray microtomography with insufficient resolution. This may complicate assessments of developmental time, although this can be circumvented by a careful analysis of external and internal structures in parallel. We further present new crown formation times for two unerupted canines from South African Australopiths, which were found to form over a rather surprisingly long time (> 4.5 years). This approach provides tools for maximizing the recovery of developmental information in teeth, especially in the most difficult cases.
  • Thumbnail Image
    Publication
    Intra- and interspecific variation in macaque molar enamel thickness
    (Wiley-Blackwell, 2014) Kato, Akiko; Tang, Nancy Karen; Borries, Carola; Papakyrikos, Amanda; Hinde, Katie; Miller, Ellen; Kunimatsu, Yutaka; Hirasaki, Eishi; Shimizu, Daisuke; Smith, Tanya
    Enamel thickness has played an important role in studies of primate taxonomy, phylogeny, and functional morphology, although its variation among hominins is poorly understood. Macaques parallel hominins in their widespread geographic distribution, relative range of body sizes, and radiation during the last five million years. To explore enamel thickness variation, we quantified average and relative enamel thickness (AET and RET) in Macaca arctoides, Macaca fascicularis, Macaca fuscata, Macaca mulatta, Macaca nemestrina, and Macaca sylvanus. Enamel area, dentine area, and enamel-dentine junction length were measured from mesial sections of 386 molars scanned with micro-computed tomography, yielding AET and RET indices. Intraspecific sex differences were not found in AET or RET. Macaca fuscata had the highest AET and RET, M. fascicularis showed the lowest AET, and M. arctoides had the lowest RET. The latitudinal distribution of macaque species was associated with AET for these six species. Temperate macaques had thicker molar enamel than did tropical macaques, suggesting that thick enamel may be adaptive in seasonal environments. Additional research is needed to determine if thick enamel in temperate macaques is a response to intensified hard-object feeding, increased abrasion, and/or a broader diet with a greater range of food material properties. The extreme ecological flexibility of macaques may prohibit identification of consistent trends between specific diets and enamel thickness conditions. Such complications of interpretation of ecological variability, dietary diversity, and enamel thickness may similarly apply for fossil Homo species.