Person: Lord, Nathan
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Lord
First Name
Nathan
Name
Lord, Nathan
5 results
Search Results
Now showing 1 - 5 of 5
Publication Nodal patterning without Lefty inhibitory feedback is functional but fragile(eLife Sciences Publications, Ltd, 2017) Rogers, Katherine W; Lord, Nathan; Gagnon, James; Pauli, Andrea; Zimmerman, Steven; Aksel, Deniz; Reyon, Deepak; Tsai, Shengdar Q; Joung, J Keith; Schier, AlexanderDevelopmental signaling pathways often activate their own inhibitors. Such inhibitory feedback has been suggested to restrict the spatial and temporal extent of signaling or mitigate signaling fluctuations, but these models are difficult to rigorously test. Here, we determine whether the ability of the mesendoderm inducer Nodal to activate its inhibitor Lefty is required for development. We find that zebrafish lefty mutants exhibit excess Nodal signaling and increased specification of mesendoderm, resulting in embryonic lethality. Strikingly, development can be fully restored without feedback: Lethal patterning defects in lefty mutants can be rescued by ectopic expression of lefty far from its normal expression domain or by spatially and temporally uniform exposure to a Nodal inhibitor drug. While drug-treated mutants are less tolerant of mild perturbations to Nodal signaling levels than wild type embryos, they can develop into healthy adults. These results indicate that patterning without inhibitory feedback is functional but fragile.Publication Memory and Modularity in Cell-Fate Decision Making(2014) Norman, Thomas Maxwell; Lord, Nathan; Paulsson, Johan; Losick, RichardGenetically identical cells sharing an environment can display markedly different phenotypes. It is often unclear how much of this variation derives from chance, external signals, or attempts by individual cells to exert autonomous phenotypic programs. By observing thousands of cells for hundreds of consecutive generations under constant conditions, we dissect the stochastic decision between a solitary, motile state and a chained, sessile state in Bacillus subtilis. The motile state is memoryless, exhibiting no autonomous control over the time spent in the state, whereas chaining is tightly timed. Timing enforces coordination among related cells in the multicellular state. Further, we show that the three-protein regulatory circuit governing the decision is modular, as initiation and maintenance of chaining are genetically separable functions. As stimulation of the same initiating pathway triggers biofilm formation, we argue that autonomous timing allows a trial commitment to multicellularity that external signals could extend.Publication Fluctuation Timescales in Bacterial Gene Expression(2014-02-25) Lord, Nathan; Paulsson, Johan Martin; Murray, Andrew; Rudner, David; Mitchison, Timothy; Cluzel, PhilippeThe stochastic nature of intracellular chemistry guarantees that even genetically identical cells sharing an environment will differ in composition. The question of whether this chemical diversity translates into significant phenotypic individuality is tied to the relative timescales of the processes involved. In order for cells in a population to have distinct functional identities, they must maintain their states for an appreciable period of time. Quantification of these timescales requires accurate time-lapse measurements covering tens or even hundreds of generations, a technical hurdle that has left these questions largely underexplored. In this thesis I present three pieces of work that aim to provide a foundation for the study of fluctuation timescales in bacteria. In the first part, I describe modifications to a recently developed microfluidic platform for continuous culture of cells under constant conditions. These revised devices enable the high-throughput, long-term measurement of gene expression dynamics while eliminating several confounding experimental factors that interfere with timescale measurements. In the second part, I employ one of these devices to survey fluctuation timescales in ~50 reporters for Eshcerichia coli gene expression. Under rich conditions, all reporters exhibited nearly identical, rapid fluctuation dynamics that were captured by a simple model of gene expression. In contrast, under poor nutritional conditions gene expression states became correlated over several cell divisions. However, accounting for instantaneous growth rate fluctuations eliminated these slow timescales, revealing an exceedingly simple behavior. In the third part, I describe our work to dissect the stochastic transition between the solitary motile state and sessile multicellular state in exponentially growing Bacillus subtilisPublication Toddler signaling regulates mesodermal cell migration downstream of Nodal signaling(eLife Sciences Publications, Ltd, 2017) Norris, Megan L; Pauli, Andrea; Gagnon, James; Lord, Nathan; Rogers, Katherine W; Mosimann, Christian; Zon, Leonard; Schier, AlexanderToddler/Apela/Elabela is a conserved secreted peptide that regulates mesendoderm development during zebrafish gastrulation. Two non-exclusive models have been proposed to explain Toddler function. The ‘specification model’ postulates that Toddler signaling enhances Nodal signaling to properly specify endoderm, whereas the ‘migration model’ posits that Toddler signaling regulates mesendodermal cell migration downstream of Nodal signaling. Here, we test key predictions of both models. We find that in toddler mutants Nodal signaling is initially normal and increasing endoderm specification does not rescue mesendodermal cell migration. Mesodermal cell migration defects in toddler mutants result from a decrease in animal pole-directed migration and are independent of endoderm. Conversely, endodermal cell migration defects are dependent on a Cxcr4a-regulated tether of the endoderm to mesoderm. These results suggest that Toddler signaling regulates mesodermal cell migration downstream of Nodal signaling and indirectly affects endodermal cell migration via Cxcr4a-signaling.Publication Synchronous long-term oscillations in a synthetic gene circuit(2017) Potvin-Trottier, Laurent; Lord, Nathan; Vinnicombe, Glenn; Paulsson, JohanSynthetically engineered genetic circuits can perform a wide range of tasks but generally with lower accuracy than natural systems. Here we revisited the first synthetic genetic oscillator, the repressilator1, and modified it based on principles from stochastic chemistry in single cells. Specifically, we sought to reduce error propagation and information losses, not by adding control loops, but by simply removing existing features. This created highly regular and robust oscillations. Some streamlined circuits kept 14 generation periods over a range of growth conditions and kept phase for hundreds of generations in single cells, allowing cells in flasks and colonies to oscillate synchronously without any coupling between them. Our results show that even the simplest synthetic genetic networks can achieve a precision that rivals natural systems, and emphasize the importance of noise analyses for circuit design in synthetic biology.