Person:
Hsu, Hao-Ru

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Hsu

First Name

Hao-Ru

Name

Hsu, Hao-Ru

Search Results

Now showing 1 - 1 of 1
  • Thumbnail Image
    Publication
    Outcome-Driven Cluster Analysis with Application to Microarray Data
    (Public Library of Science, 2015) Hsu, Hao-Ru; Finkelstein, Dianne; Schoenfeld, David
    One goal of cluster analysis is to sort characteristics into groups (clusters) so that those in the same group are more highly correlated to each other than they are to those in other groups. An example is the search for groups of genes whose expression of RNA is correlated in a population of patients. These genes would be of greater interest if their common level of RNA expression were additionally predictive of the clinical outcome. This issue arose in the context of a study of trauma patients on whom RNA samples were available. The question of interest was whether there were groups of genes that were behaving similarly, and whether each gene in the cluster would have a similar effect on who would recover. For this, we develop an algorithm to simultaneously assign characteristics (genes) into groups of highly correlated genes that have the same effect on the outcome (recovery). We propose a random effects model where the genes within each group (cluster) equal the sum of a random effect, specific to the observation and cluster, and an independent error term. The outcome variable is a linear combination of the random effects of each cluster. To fit the model, we implement a Markov chain Monte Carlo algorithm based on the likelihood of the observed data. We evaluate the effect of including outcome in the model through simulation studies and describe a strategy for prediction. These methods are applied to trauma data from the Inflammation and Host Response to Injury research program, revealing a clustering of the genes that are informed by the recovery outcome.