Person: Yuan, Guo-Cheng
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Yuan
First Name
Guo-Cheng
Name
Yuan, Guo-Cheng
5 results
Search Results
Now showing 1 - 5 of 5
Publication BORIS Promotes Chromatin Regulatory Interactions in Treatment-Resistant Cancer Cells(Springer Science and Business Media LLC, 2019-08) Dries, Ruben; Seruggia, Davide; Gao, Yang; Sharma, Bandana; Huang, Hao; Moreau, Lisa; McLane, Michael; Marco, Eugenio; Chen, Ting; Yuan, Guo-Cheng; Young, Richard A.; Debruyne, David; Day, Daniel; Gray, Nathanael; Wong, Kwok-Kin; Orkin, Stuart; George, Rani; Sengupta, SatyakiThe CCCTC-binding factor (CTCF), which anchors DNA loops that organize the genome into structural domains, plays a central role in gene control by facilitating or constraining interactions between genes and their regulatory elements. In cancer cells the disruption of CTCF binding at specific loci through somatic mutation or DNA hypermethylation5 results in the loss of loop anchors and consequent activation of oncogenes. By contrast, the germ cell-specific paralog of CTCF, BORIS (Brother of the Regulator of Imprinted Sites), is overexpressed in multiple cancers, but its contributions to the malignant phenotype remain unclear. Here we show that aberrant upregulation of BORIS promotes novel chromatin interactions in ALK-mutated, MYCN-amplified neuroblastoma cells rendered resistant to ALK inhibition. These cells are reprogrammed to a distinct phenotypic state during the acquisition of resistance, a process defined by the initial loss of MYCN expression followed by subsequent overexpression of BORIS and a concomitant switch in cellular dependence from MYCN to BORIS. The resultant BORIS-regulated alterations in chromatin looping lead to the formation of new super-enhancers that drive the ectopic expression of a subset of proneural transcription factors that ultimately define the resistance phenotype. These results identify a previously unrecognized role of BORIS – to engender regulatory chromatin interactions that support specific cancer phenotypes.Publication The role of Cdx2 as a lineage specific transcriptional repressor for pluripotent network during the first developmental cell lineage segregation(Nature Publishing Group UK, 2017) Huang, Daosheng; Guo, Guoji; Yuan, Ping; Ralston, Amy; Sun, Lingang; Huss, Mikael; Mistri, Tapan; Pinello, Luca; Ng, Huck Hui; Yuan, Guo-Cheng; Ji, Junfeng; Rossant, Janet; Robson, Paul; Han, XiaopingThe first cellular differentiation event in mouse development leads to the formation of the blastocyst consisting of the inner cell mass (ICM) and trophectoderm (TE). The transcription factor CDX2 is required for proper TE specification, where it promotes expression of TE genes, and represses expression of Pou5f1 (OCT4). However its downstream network in the developing embryo is not fully characterized. Here, we performed high-throughput single embryo qPCR analysis in Cdx2 null embryos to identify CDX2-regulated targets in vivo. To identify genes likely to be regulated by CDX2 directly, we performed CDX2 ChIP-Seq on trophoblast stem (TS) cells. In addition, we examined the dynamics of gene expression changes using inducible CDX2 embryonic stem (ES) cells, so that we could predict which CDX2-bound genes are activated or repressed by CDX2 binding. By integrating these data with observations of chromatin modifications, we identify putative novel regulatory elements that repress gene expression in a lineage-specific manner. Interestingly, we found CDX2 binding sites within regulatory elements of key pluripotent genes such as Pou5f1 and Nanog, pointing to the existence of a novel mechanism by which CDX2 maintains repression of OCT4 in trophoblast. Our study proposes a general mechanism in regulating lineage segregation during mammalian development.Publication STAT5 Outcompetes STAT3 To Regulate the Expression of the Oncogenic Transcriptional Modulator BCL6(American Society for Microbiology, 2013) Walker, Sarah; Nelson, Erik; Yeh, Jennifer; Pinello, Luca; Yuan, Guo-Cheng; Frank, DavidInappropriate activation of the transcription factors STAT3 and STAT5 has been shown to drive cancer pathogenesis through dysregulation of genes involved in cell survival, growth, and differentiation. Although STAT3 and STAT5 are structurally related, they can have opposite effects on key genes, including BCL6. BCL6, a transcriptional repressor, has been shown to be oncogenic in diffuse large B cell lymphoma. BCL6 also plays an important role in breast cancer pathogenesis, a disease in which STAT3 and STAT5 can be activated individually or concomitantly. To determine the mechanism by which these oncogenic transcription factors regulate BCL6 transcription, we analyzed their effects at the levels of chromatin and gene expression. We found that STAT3 increases expression of BCL6 and enhances recruitment of RNA polymerase II phosphorylated at a site associated with transcriptional initiation. STAT5, in contrast, represses BCL6 expression below basal levels and decreases the association of RNA polymerase II at the gene. Furthermore, the repression mediated by STAT5 is dominant over STAT3-mediated induction. STAT5 exerts this effect by displacing STAT3 from one of the two regulatory regions to which it binds. These findings may underlie the divergent biology of breast cancers containing activated STAT3 alone or in conjunction with activated STAT5.Publication Broadly heterogeneous activation of the master regulator for sporulation in Bacillus subtilis(Proceedings of the National Academy of Sciences, 2010) Chastanet, A.; Vitkup, D.; Yuan, Guo-Cheng; Norman, Thomas Maxwell; Liu, Jun; Losick, RichardA model system for investigating how developmental regulatory networks determine cell fate is spore formation in Bacillus subtilis. The master regulator for sporulation is Spo0A, which is activated by phosphorylation via a phosphorelay that is subject to three positive feedback loops. The ultimate decision to sporulate is, however, stochastic in that only a portion of the population sporulates even under optimal conditions. It was previously assumed that activation of Spo0A and hence entry into sporulation is subject to a bistable switch mediated by one or more feedback loops. Here we reinvestigate the basis for bimodality in sporulation. We show that none of the feedback loops is rate limiting for the synthesis and phosphorylation of Spo0A. Instead, the loops ensure a just-in-time supply of relay components for rising levels of phosphorylated Spo0A, with phosphate flux through the relay being limiting for Spo0A activation and sporulation. In addition, genes under Spo0A control did not exhibit a bimodal pattern of expression as expected for a bistable switch. In contrast, we observed a highly heterogeneous pattern of Spo0A activation that increased in a nonlinear manner with time. We present a computational model for the nonlinear increase and propose that the phosphorelay is a noise generator and that only cells that attain a threshold level of phosphorylated Spo0A sporulate.Publication Chromatin States Accurately Classify Cell Differentiation Stages(Public Library of Science, 2012) Larson, Jessica Lynn; Yuan, Guo-ChengGene expression is controlled by the concerted interactions between transcription factors and chromatin regulators. While recent studies have identified global chromatin state changes across cell-types, it remains unclear to what extent these changes are co-regulated during cell-differentiation. Here we present a comprehensive computational analysis by assembling a large dataset containing genome-wide occupancy information of 5 histone modifications in 27 human cell lines (including 24 normal and 3 cancer cell lines) obtained from the public domain, followed by independent analysis at three different representations. We classified the differentiation stage of a cell-type based on its genome-wide pattern of chromatin states, and found that our method was able to identify normal cell lines with nearly 100% accuracy. We then applied our model to classify the cancer cell lines and found that each can be unequivocally classified as differentiated cells. The differences can be in part explained by the differential activities of three regulatory modules associated with embryonic stem cells. We also found that the “hotspot” genes, whose chromatin states change dynamically in accordance to the differentiation stage, are not randomly distributed across the genome but tend to be embedded in multi-gene chromatin domains, and that specialized gene clusters tend to be embedded in stably occupied domains.