Person:
Li, Lin

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Li

First Name

Lin

Name

Li, Lin

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Publication
    Using eQTL weights to improve power for genome-wide association studies: a genetic study of childhood asthma
    (Frontiers Media S.A., 2013) Li, Lin; Lin, Xihong; Kabesch, Michael; Bouzigon, Emmanuelle; Demenais, Florence; Farrall, Martin; Moffatt, Miriam F.; Liang, Liming
    Increasing evidence suggests that single nucleotide polymorphisms (SNPs) associated with complex traits are more likely to be expression quantitative trait loci (eQTLs). Incorporating eQTL information hence has potential to increase power of genome-wide association studies (GWAS). In this paper, we propose using eQTL weights as prior information in SNP based association tests to improve test power while maintaining control of the family-wise error rate (FWER) or the false discovery rate (FDR). We apply the proposed methods to the analysis of a GWAS for childhood asthma consisting of 1296 unrelated individuals with German ancestry. The results confirm that eQTLs are enriched for previously reported asthma SNPs. We also find that some SNPs are insignificant using procedures without eQTL weighting, but become significant using eQTL-weighted Bonferroni or Benjamini–Hochberg procedures, while controlling the same FWER or FDR level. Some of these SNPs have been reported by independent studies in recent literature. The results suggest that the eQTL-weighted procedures provide a promising approach for improving power of GWAS. We also report the results of our methods applied to the large-scale European GABRIEL consortium data.
  • Thumbnail Image
    Publication
    Genetic Deficiency of Glycogen Synthase Kinase-3β Corrects Diabetes in Mouse Models of Insulin Resistance
    (Public Library of Science, 2008) Tanabe, Katsuya; Liu, Zhonghao; Patel, Satish; Doble, Bradley W; Cras-Méneur, Corentin; Martinez, Sara C; Welling, Cris M; Bernal-Mizrachi, Ernesto; Woodgett, James R; Permutt, M. Alan; Li, Lin; White, Morris
    Despite treatment with agents that enhance β-cell function and insulin action, reduction in β-cell mass is relentless in patients with insulin resistance and type 2 diabetes mellitus. Insulin resistance is characterized by impaired signaling through the insulin/insulin receptor/insulin receptor substrate/PI-3K/Akt pathway, leading to elevation of negatively regulated substrates such as glycogen synthase kinase-3β (Gsk-3β). When elevated, this enzyme has antiproliferative and proapoptotic properties. In these studies, we designed experiments to determine the contribution of Gsk-3β to regulation of β-cell mass in two mouse models of insulin resistance. Mice lacking one allele of the insulin receptor (Ir+/−) exhibit insulin resistance and a doubling of β-cell mass. Crossing these mice with those having haploinsufficiency for Gsk-3β (Gsk-3β+/−) reduced insulin resistance by augmenting whole-body glucose disposal, and significantly reduced β-cell mass. In the second model, mice missing two alleles of the insulin receptor substrate 2 (Irs2−/−), like the Ir+/− mice, are insulin resistant, but develop profound β-cell loss, resulting in early diabetes. We found that islets from these mice had a 4-fold elevation of Gsk-3β activity associated with a marked reduction of β-cell proliferation and increased apoptosis. Irs2−/− mice crossed with Gsk-3β+/− mice preserved β-cell mass by reversing the negative effects on proliferation and apoptosis, preventing onset of diabetes. Previous studies had shown that islets of Irs2−/− mice had increased cyclin-dependent kinase inhibitor p27kip1 that was limiting for β-cell replication, and reduced Pdx1 levels associated with increased cell death. Preservation of β-cell mass in Gsk-3β+/−Irs2−/− mice was accompanied by suppressed p27kip1 levels and increased Pdx1 levels. To separate peripheral versus β-cell–specific effects of reduction of Gsk3β activity on preservation of β-cell mass, mice homozygous for a floxed Gsk-3β allele (Gsk-3F/F) were then crossed with rat insulin promoter-Cre (RIP-Cre) mice to produce β-cell–specific knockout of Gsk-3β (βGsk-3β−/−). Like Gsk-3β+/− mice, βGsk-3β−/− mice also prevented the diabetes of the Irs2−/− mice. The results of these studies now define a new, negatively regulated substrate of the insulin signaling pathway specifically within β-cells that when elevated, can impair replication and increase apoptosis, resulting in loss of β-cells and diabetes. These results thus form the rationale for developing agents to inhibit this enzyme in obese insulin-resistant individuals to preserve β-cells and prevent diabetes onset.