Person: Shore, Stephanie
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Shore
First Name
Stephanie
Name
Shore, Stephanie
12 results
Search Results
Now showing 1 - 10 of 12
Publication IL-33 Drives Augmented Responses to Ozone in Obese Mice(National Institute of Environmental Health Sciences, 2016) Mathews, Joel A.; Krishnamoorthy, Nandini; Kasahara, David Itiro; Cho, Youngji; Wurmbrand, Allison Patricia; Ribeiro, Luiza; Smith, Dirk; Umetsu, Dale; Levy, Bruce; Shore, StephanieBackground: Ozone increases IL-33 in the lungs, and obesity augments the pulmonary effects of acute ozone exposure. Objectives: We assessed the role of IL-33 in the augmented effects of ozone observed in obese mice. Methods: Lean wildtype and obese db/db mice were pretreated with antibodies blocking the IL-33 receptor, ST2, and then exposed to ozone (2 ppm for 3 hr). Airway responsiveness was assessed, bronchoalveolar lavage (BAL) was performed, and lung cells harvested for flow cytometry 24 hr later. Effects of ozone were also assessed in obese and lean mice deficient in γδ T cells and their wildtype controls. Results: and Discussion: Ozone caused greater increases in BAL IL-33, neutrophils, and airway responsiveness in obese than lean mice. Anti-ST2 reduced ozone-induced airway hyperresponsiveness and inflammation in obese mice but had no effect in lean mice. Obesity also augmented ozone-induced increases in BAL CXCL1 and IL-6, and in BAL type 2 cytokines, whereas anti-ST2 treatment reduced these cytokines. In obese mice, ozone increased lung IL-13+ innate lymphoid cells type 2 (ILC2) and IL-13+ γδ T cells. Ozone increased ST2+ γδ T cells, indicating that these cells can be targets of IL-33, and γδ T cell deficiency reduced obesity-related increases in the response to ozone, including increases in type 2 cytokines. Conclusions: Our data indicate that IL-33 contributes to augmented responses to ozone in obese mice. Obesity and ozone also interacted to promote type 2 cytokine production in γδ T cells and ILC2 in the lungs, which may contribute to the observed effects of IL-33. Citation: Mathews JA, Krishnamoorthy N, Kasahara DI, Cho Y, Wurmbrand AP, Ribeiro L, Smith D, Umetsu D, Levy BD, Shore SA. 2017. IL-33 drives augmented responses to ozone in obese mice. Environ Health Perspect 125:246–253; http://dx.doi.org/10.1289/EHP272Publication Effect of acute ozone exposure on the lung metabolomes of obese and lean mice(Public Library of Science, 2017) Mathews, Joel Andrew; Kasahara, David Itiro; Cho, Youngji; Bell, Lauren Nicole; Gunst, Philip Ross; Karoly, Edward D.; Shore, StephaniePulmonary responses to the air pollutant, ozone, are increased in obesity. Both obesity and ozone cause changes in systemic metabolism. Consequently, we examined the impact of ozone on the lung metabolomes of obese and lean mice. Lean wildtype and obese db/db mice were exposed to acute ozone (2 ppm for 3 h) or air. 24 hours later, the lungs were excised, flushed with PBS to remove blood and analyzed via liquid-chromatography or gas-chromatography coupled to mass spectrometry for metabolites. Both obesity and ozone caused changes in the lung metabolome. Of 321 compounds identified, 101 were significantly impacted by obesity in air-exposed mice. These included biochemicals related to carbohydrate and lipid metabolism, which were each increased in lungs of obese versus lean mice. These metabolite changes may be of functional importance given the signaling capacity of these moieties. Ozone differentially affected the lung metabolome in obese versus lean mice. For example, almost all phosphocholine-containing lysolipids were significantly reduced in lean mice, but this effect was attenuated in obese mice. Glutathione metabolism was also differentially affected by ozone in obese and lean mice. Finally, the lung metabolome indicated a role for the microbiome in the effects of both obesity and ozone: all measured bacterial/mammalian co-metabolites were significantly affected by obesity and/or ozone. Thus, metabolic derangements in obesity appear to impact the response to ozone.Publication γδ T Cells Are Required for Pulmonary IL-17A Expression after Ozone Exposure in Mice: Role of TNFα(Public Library of Science, 2014) Mathews, Joel A.; Williams, Alison S.; Brand, Jeffrey; Wurmbrand, Allison P.; Chen, Lucas; Ninin, Fernanda MC.; Si, Huiqing; Kasahara, David; Shore, StephanieOzone is an air pollutant that causes pulmonary symptoms. In mice, ozone exposure causes pulmonary injury and increases bronchoalveolar lavage macrophages and neutrophils. We have shown that IL-17A is important in the recruitment of neutrophils after subacute ozone exposure (0.3 ppm for 24–72 h). We hypothesized that γδ T cells are the main producers of IL-17A after subacute ozone. To explore this hypothesis we exposed wildtype mice and mice deficient in γδ T cells (TCRδ−/−) to ozone or room air. Ozone-induced increases in BAL macrophages and neutrophils were attenuated in TCRδ−/− mice. Ozone increased the number of γδ T cells in the lungs and increased pulmonary Il17a mRNA expression and the number of IL-17A+ CD45+ cells in the lungs and these effects were abolished in TCRδ−/− mice. Ozone-induced increases in factors downstream of IL-17A signaling, including G-CSF, IL-6, IP-10 and KC were also decreased in TCRδ−/− versus wildtype mice. Neutralization of IL-17A during ozone exposure in wildtype mice mimicked the effects of γδ T cell deficiency. TNFR2 deficiency and etanercept, a TNFα antagonist, also reduced ozone-induced increases in Il17a mRNA, IL-17A+ CD45+ cells and BAL G-CSF as well as BAL neutrophils. TNFR2 deficient mice also had decreased ozone-induced increases in Ccl20, a chemoattractant for IL-17A+ γδ T cells. Il17a mRNA and IL-17A+ γδ T cells were also lower in obese Cpefat versus lean WT mice exposed to subacute ozone, consistent with the reduced neutrophil recruitment observed in the obese mice. Taken together, our data indicate that pulmonary inflammation induced by subacute ozone requires γδ T cells and TNFα-dependent recruitment of IL-17A+ γδ T cells to the lung.Publication Adiponectin, Leptin, and Resistin in Asthma: Basic Mechanisms through Population Studies(Hindawi Publishing Corporation, 2013) Sood, Akshay; Shore, StephanieAdipokines, factors produced by adipose tissue, may be proinflammatory (such as leptin and resistin) or anti-inflammatory (such as adiponectin). Effects of these adipokines on the lungs have the potential to evoke or exacerbate asthma. This review summarizes basic mechanistic data through population-based and clinical studies addressing the potential role of adipokines in asthma. Augmenting circulating concentrations of adiponectin attenuates allergic airway inflammation and airway hyperresponsiveness in mice. Murine data is supported by human data that suggest that low serum adiponectin is associated with greater risk for asthma among women and peripubertal girls. Further, higher serum total adiponectin may be associated with lower clinical asthma severity among children and women with asthma. In contrast, exogenous administration of leptin results in augmented allergic airway hyperresponsiveness in mice. Alveolar macrophages obtained from obese asthmatics are uniquely sensitive to leptin in terms of their potential to augment inflammation. Consistent with this basic mechanistic data, epidemiologic studies demonstrate that higher serum leptin is associated with greater asthma prevalence and/or severity and that these associations may be stronger among women, postpubertal girls, and prepubertal boys. The role of adipokines in asthma is still evolving, and it is not currently known whether modulation of adipokines may be helpful in asthma prevention or treatment.Publication Impact of Adiponectin Overexpression on Allergic Airways Responses in Mice(Hindawi Publishing Corporation, 2013) Verbout, Norah G.; Benedito, Leandro; Williams, Alison S.; Kasahara, David; Wurmbrand, Allison Patricia; Si, Huiqing; Halayko, Andrew J.; Hug, Christopher; Shore, StephanieObesity is an important risk factor for asthma. Obese individuals have decreased circulating adiponectin, an adipose-derived hormone with anti-inflammatory properties. We hypothesized that transgenic overexpression of adiponectin would attenuate allergic airways inflammation and mucous hyperplasia in mice. To test this hypothesis, we used mice overexpressing adiponectin (Adipo Tg). Adipo Tg mice had marked increases in both serum adiponectin and bronchoalveolar lavage (BAL) fluid adiponectin. Both acute and chronic ovalbumin (OVA) sensitization and challenge protocols were used. In both protocols, OVA-induced increases in total BAL cells were attenuated in Adipo Tg versus WT mice. In the acute protocol, OVA-induced increases in several IL-13 dependent genes were attenuated in Adipo Tg versus WT mice, even though IL-13 per se was not affected. With chronic exposure, though OVA-induced increases in goblet cells numbers per millimeter of basement membrane were greater in Adipo Tg versus WT mice, mRNA abundance of mucous genes in lungs was not different. Also, adiponectin overexpression did not induce M2 polarization in alveolar macrophages. Our results indicate that adiponectin protects against allergen-induced inflammatory cell recruitment to the airspaces, but not development of goblet cell hyperplasia.Publication Role of the Adiponectin Binding Protein, T-Cadherin (cdh13), in Pulmonary Responses to Subacute Ozone(Public Library of Science, 2013) Kasahara, David; Williams, Alison S.; Benedito, Leandro A.; Ranscht, Barbara; Kobzik, Lester; Hug, Christopher; Shore, StephanieAdiponectin, an adipose derived hormone with pleiotropic functions, binds to several proteins, including T-cadherin. We have previously reported that adiponectin deficient (Adipo−/−) mice have increased IL-17A-dependent neutrophil accumulation in their lungs after subacute exposure to ozone (0.3 ppm for 72 hrs). The purpose of this study was to determine whether this anti-inflammatory effect of adiponectin required adiponectin binding to T-cadherin. Wildtype, Adipo−/−, T-cadherin deficient (T-cad−/−), and bideficient (Adipo−/−/T-cad−/−) mice were exposed to subacute ozone or air. Compared to wildtype mice, ozone-induced increases in pulmonary IL-17A mRNA expression were augmented in T-cad−/− and Adipo−/− mice. Compared to T-cad−/− mice, there was no further increase in IL-17A in Adipo−/−/T-cad−/− mice, indicating that adiponectin binding to T-cadherin is required for suppression of ozone-induced IL-17A expression. Similar results were obtained for pulmonary mRNA expression of saa3, an acute phase protein capable of inducing IL-17A expression. Comparison of lung histological sections across genotypes also indicated that adiponectin attenuation of ozone-induced inflammatory lesions at bronchiolar branch points required T-cadherin. BAL neutrophils and G-CSF were augmented in T-cad−/− mice and further augmented in Adipo−/−/T-cad−/− mice. Taken together with previous observations indicating that augmentation of these moieties in ozone exposed Adipo−/− mice is partially IL-17A dependent, the results indicate that effects of T-cadherin deficiency on BAL neutrophils and G-CSF are likely secondary to changes in IL-17A, but that adiponectin also acts via T-cadherin independent pathways. Our results indicate that T-cadherin is required for the ability of adiponectin to suppress some but not all aspects of ozone-induced pulmonary inflammation.Publication Augmented Pulmonary Responses to Acute Ozone Exposure in Obese Mice: Roles of TNFR2 and IL-13(National Institute of Environmental Health Sciences, 2013) Williams, Alison Suzanne; Mathews, Joel Andrew; Kasahara, David Itiro; Chen, Lucas; Wurmbrand, Allison Patricia; Si, Huiqing; Shore, StephanieBackground: Acute ozone (O3) exposure results in greater inflammation and airway hyperresponsiveness (AHR) in obese versus lean mice. Objectives: We examined the hypothesis that these augmented responses to O3 are the result of greater signaling through tumor necrosis factor receptor 2 (TNFR2) and/or interleukin (IL)-13. Methods: We exposed lean wild-type (WT) and TNFR2-deficient (TNFR2–/–) mice, and obese Cpefat and TNFR2-deficient Cpefat mice (Cpefat/TNFR2–/–), to O3 (2 ppm for 3 hr) either with or without treatment with anti–IL-13 or left them unexposed. Results: O3-induced increases in baseline pulmonary mechanics, airway responsiveness, and cellular inflammation were greater in Cpefat than in WT mice. In lean mice, TNFR2 deficiency ablated O3-induced AHR without affecting pulmonary inflammation; whereas in obese mice, TNFR2 deficiency augmented O3-induced AHR but reduced inflammatory cell recruitment. O3 increased pulmonary expression of IL-13 in Cpefat but not WT mice. Flow cytometry analysis of lung cells indicated greater IL-13–expressing CD4+ cells in Cpefat versus WT mice after O3 exposure. In Cpefat mice, anti–IL-13 treatment attenuated O3-induced increases in pulmonary mechanics and inflammatory cell recruitment, but did not affect AHR. These effects of anti–IL-13 treatment were not observed in Cpefat/TNFR2–/– mice. There was no effect of anti–IL-13 treatment in WT mice. Conclusions: Pulmonary responses to O3 are not just greater, but qualitatively different, in obese versus lean mice. In particular, in obese mice, O3 induces IL-13 and IL-13 synergizes with TNF via TNFR2 to exacerbate O3-induced changes in pulmonary mechanics and inflammatory cell recruitment but not AHR.Publication IL-17 producing innate lymphoid cells and the NLRP3 inflammasome facilitate obesity-associated airway hyperreactivity(2014) Kim, Hye Young; Lee, Hyun Jun; Chang, Ya-Jen; Pichavant, Muriel; Shore, Stephanie; Fitzgerald, Katherine A.; Iwakura, Yoichiro; Israel, Elliot; Bolger, Kenneth; Faul, John; DeKruyff, Rosemarie H.; Umetsu, Dale T.Obesity is associated with the development of asthma and considerable asthma-related healthcare utilization. To understand the immunological pathways that lead to obesity-associated asthma, we fed mice a high fat diet for 12 weeks, which resulted in obesity and the development of airway hyperreactivity (AHR), a cardinal feature of asthma. This AHR depended on innate immunity, since it occurred in obese Rag−/− mice, and on IL-17A and the NLRP3 inflammasome, since it did not develop in obese Il17−/− or Nlrp3−/− mice. The AHR was also associated with the presence in the lungs of CCR6+ innate lymphoid cells producing IL-17A (ILC3 cells), which could by themselves mediate AHR when adoptively transferred into Rag2−/− Il2rγ−/− mice. IL-1β played an important role by expanding the ILC3 cells, and treatment to block the function of IL-1β abolished obesity-induced AHR. Since we found ILC3-like cells in the bronchoalveolar lavage fluid of human patients with asthma, we suggest that obesity-associated asthma is facilitated by inflammation mediated by NLRP3, IL-1β and ILC3 cells.Publication γδ T Cells Are Required for M2 Macrophage Polarization and Resolution of Ozone-Induced Pulmonary Inflammation in Mice(Public Library of Science, 2015) Mathews, Joel A.; Kasahara, David; Ribeiro, Luiza; Wurmbrand, Allison P.; Ninin, Fernanda M. C.; Shore, StephanieWe examined the role of γδ T cells in the induction of alternatively activated M2 macrophages and the resolution of inflammation after ozone exposure. Wildtype (WT) mice and mice deficient in γδ T cells (TCRδ-/- mice) were exposed to air or to ozone (0.3 ppm for up to 72h) and euthanized immediately or 1, 3, or 5 days after cessation of exposure. In WT mice, M2 macrophages accumulated in the lungs over the course of ozone exposure. Pulmonary mRNA abundance of the M2 genes, Arg1, Retnla, and Clec10a, also increased after ozone. In contrast, no evidence of M2 polarization was observed in TCRδ-/- mice. WT but not TCRδ-/- mice expressed the M2c polarizing cytokine, IL-17A, after ozone exposure and WT mice treated with an IL-17A neutralizing antibody exhibited attenuated ozone-induced M2 gene expression. In WT mice, ozone-induced increases in bronchoalveolar lavage neutrophils and macrophages resolved quickly after cessation of ozone exposure returning to air exposed levels within 3 days. However, lack of M2 macrophages in TCRδ-/- mice was associated with delayed clearance of inflammatory cells after cessation of ozone and increased accumulation of apoptotic macrophages in the lungs. Delayed restoration of normal lung architecture was also observed in TCRδ-/- mice. In summary, our data indicate that γδ T cells are required for the resolution of ozone-induced inflammation, likely because γδ T cells, through their secretion of IL-17A, contribute to changes in macrophage polarization that promote clearance of apoptotic cells.Publication Induction of IL-17A Precedes Development of Airway Hyperresponsiveness during Diet-Induced Obesity and Correlates with Complement Factor D(Frontiers Media S.A., 2014) Mathews, Joel A.; Wurmbrand, Allison P.; Ribeiro, Luiza; Neto, Felippe Lazar; Shore, StephanieObesity is a risk factor for the development of asthma. Obese mice exhibit innate airway hyperresponsiveness (AHR), a characteristic feature of asthma, and IL-17A is required for development of AHR in obese mice. The purpose of this study was to examine the temporal association between the onset of AHR and changes in IL-17A during the development of obesity by high-fat feeding in mice. At weaning, C57BL/6J mice were placed either on mouse chow or on a high-fat diet (HFD) and examined 9, 12, 15, 18, or 24 weeks later. Airway responsiveness to aerosolized methacholine (assessed via the forced oscillation technique) was greater in mice fed HFD versus chow for 24 weeks but not at earlier time points. Bronchoalveolar lavage and serum IL-17A were not affected by either the type or duration of diet, but increased pulmonary IL17a mRNA abundance was observed in HFD versus chow fed mice after both 18 and 24 weeks. Flow cytometry also confirmed an increase in IL-17A+ γδ T cells and IL-17A+ CD4+ T (Th17) cells in lungs of HFD versus chow fed mice. Pulmonary expression of Cfd (complement factor D, adipsin), a gene whose expression can be reduced by IL-17A, decreased after both 18 and 24 weeks in HFD versus chow fed mice. Furthermore, pulmonary Cfd mRNA abundance correlated with elevations in pulmonary Il17a mRNA expression and with AHR. Serum levels of TNFα, MIP-1α, and MIP-1β, and classical markers of systemic inflammation of obesity were significantly greater in HFD than chow fed mice after 24 weeks, but not earlier. In conclusion, our data indicate that pulmonary rather than systemic IL-17A is important for obesity-related AHR and suggest that changes in pulmonary Cfd expression contribute to these effects of IL-17A. Further, the observation that increases in Il17a preceded the development of AHR by several weeks suggests that IL-17A interacts with other factors to promote AHR. The observation that the onset of the systemic inflammation of obesity coincided temporally with the development of AHR suggest that systemic inflammation may be one of these factors.