Person: Muskavitch, Marc
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Muskavitch
First Name
Marc
Name
Muskavitch, Marc
4 results
Search Results
Now showing 1 - 4 of 4
Publication Metabolic and Target-Site Mechanisms Combine to Confer Strong DDT Resistance in Anopheles gambiae(Public Library of Science, 2014) Mitchell, Sara N.; Rigden, Daniel J.; Dowd, Andrew J.; Lu, Fang; Wilding, Craig S.; Weetman, David; Dadzie, Samuel; Jenkins, Adam M.; Regna, Kimberly; Boko, Pelagie; Djogbenou, Luc; Muskavitch, Marc; Ranson, Hilary; Paine, Mark J. I.; Mayans, Olga; Donnelly, Martin J.The development of resistance to insecticides has become a classic exemplar of evolution occurring within human time scales. In this study we demonstrate how resistance to DDT in the major African malaria vector Anopheles gambiae is a result of both target-site resistance mechanisms that have introgressed between incipient species (the M- and S-molecular forms) and allelic variants in a DDT-detoxifying enzyme. Sequencing of the detoxification enzyme, Gste2, from DDT resistant and susceptible strains of An. gambiae, revealed a non-synonymous polymorphism (I114T), proximal to the DDT binding domain, which segregated with strain phenotype. Recombinant protein expression and DDT metabolism analysis revealed that the proteins from the susceptible strain lost activity at higher DDT concentrations, characteristic of substrate inhibition. The effect of I114T on GSTE2 protein structure was explored through X-ray crystallography. The amino acid exchange in the DDT-resistant strain introduced a hydroxyl group nearby the hydrophobic DDT-binding region. The exchange does not result in structural alterations but is predicted to facilitate local dynamics and enzyme activity. Expression of both wild-type and 114T alleles the allele in Drosophila conferred an increase in DDT tolerance. The 114T mutation was significantly associated with DDT resistance in wild caught M-form populations and acts in concert with target-site mutations in the voltage gated sodium channel (Vgsc-1575Y and Vgsc-1014F) to confer extreme levels of DDT resistance in wild caught An. gambiae.Publication Patterns of Genomic Differentiation between Ecologically Differentiated M and S Forms of Anopheles gambiae in West and Central Africa(Oxford University Press, 2012) Reidenbach, Kyanne R.; Neafsey, Daniel; Costantini, Carlo; Sagnon, N’Fale; Simard, Frédéric; Ragland, Gregory J.; Egan, Scott P.; Feder, Jeffrey L.; Muskavitch, Marc; Besansky, Nora J.Anopheles gambiae M and S are thought to be undergoing ecological speciation by adapting to different larval habitats. Toward an improved understanding of the genetic determinants and evolutionary processes shaping their divergence, we used a 400,000 single-nucleotide polymorphism (SNP) genotyping array to characterize patterns of genomic differentiation between four geographically paired M and S population samples from West and Central Africa. In keeping with recent studies based on more limited genomic or geographic sampling, divergence was not confined to a few isolated “speciation islands.” Divergence was both widespread across the genome and heterogeneous. Moreover, we find consistent patterns of genomic divergence across sampling sites and mutually exclusive clustering of M and S populations using genetic distances based on all 400,000 SNPs, implying that M and S are evolving collectively across the study area. Nevertheless, the clustering of local M and S populations using genetic distances based on SNPs from genomic regions of low differentiation is consistent with recent gene flow and introgression. To account for these data and reconcile apparent paradoxes in reported patterns of M–S genomic divergence and hybridization, we propose that extrinsic ecologically based postmating barriers vary in strength as environmental conditions fluctuate or change.Publication Breakdown in the Process of Incipient Speciation in Anopheles gambiae(Genetics Society of America, 2013) Nwakanma, Davis C.; Neafsey, Daniel; Jawara, Musa; Adiamoh, Majidah; Lund, Emily; Rodrigues, Amabelia; Loua, Kovana M.; Konate, Lassana; Sy, Ngayo; Dia, Ibrahima; Awolola, T. Samson; Muskavitch, Marc; Conway, David J.Understanding genetic causes and effects of speciation in sympatric populations of sexually reproducing eukaryotes is challenging, controversial, and of practical importance for controlling rapidly evolving pests and pathogens. The major African malaria vector mosquito Anopheles gambiae sensu stricto (s.s.) is considered to contain two incipient species with strong reproductive isolation, hybrids between the M and S molecular forms being very rare. Following recent observations of higher proportions of hybrid forms at a few sites in West Africa, we conducted new surveys of 12 sites in four contiguous countries (The Gambia, Senegal, Guinea-Bissau, and Republic of Guinea). Identification and genotyping of 3499 A. gambiae s.s. revealed high frequencies of M/S hybrid forms at each site, ranging from 5 to 42%, and a large spectrum of inbreeding coefficient values from 0.11 to 0.76, spanning most of the range expected between the alternative extremes of panmixia and assortative mating. Year-round sampling over 2 years at one of the sites in The Gambia showed that M/S hybrid forms had similar relative frequencies throughout periods of marked seasonal variation in mosquito breeding and abundance. Genome-wide scans with an Affymetrix high-density single-nucleotide polymorphism (SNP) microarray enabled replicate comparisons of pools of different molecular forms, in three separate populations. These showed strong differentiation between M and S forms only in the pericentromeric region of the X chromosome that contains the molecular form-specific marker locus, with only a few other loci showing minor differences. In the X chromosome, the M/S hybrid forms were more differentiated from M than from S forms, supporting a hypothesis of asymmetric introgression and backcrossing.Publication Malaria infection does not affect the sensitivity of peripheral receptor neurons in Anopheles stephensi(BioMed Central, 2013) Grant, Alan; Muskavitch, Marc; O’Connell, Robert JBackground: Mosquitoes transmit many important diseases including malaria, dengue and yellow fever. Disease transmission from one vertebrate host to another depends on repeated blood feedings by single mosquitoes. In order for the mosquito to acquire the blood that it needs to complete oogenesis, the insect must locate a suitable host. Olfactory cues (including carbon dioxide) released by the host and detected by the mosquito are the primary signals that vector insects use for host location. Previous studies have suggested that the physiological status - including bacterial, fungal, viral and Plasmodium infections - can modulate aspects of behavior in haematophagous insects. Methods: Standard electrophysiological techniques were used to record extracellular responses from the receptor neurons located in sensilla found on the maxillary palps of the insects. The recording microelectrode was inserted through the cuticle at the base of an individual sensillum and the extracellular electrical signals obtained from the three neurons within the sensillum were recorded. Stimulations consisted of 2 s pulses of the desired concentrations of CO2 or dosages of 1-octen-3-ol. Results: Accordingly, we were interested in determining whether Plasmodium infection affects the sensitivity of those peripheral olfactory sensors that are involved in host-seeking in mosquitoes. Our studies indicate that infection of female Anopheles stephensi with Plasmodium berghei does not alter the response characteristics of the neurons innervating the maxillary palp sensilla that respond to the attractants carbon dioxide and 1-octen-3-ol. Although the response characteristics of the peripheral sensory neurons are not affected by infection status, we found that the age of the mosquito alone does affect the threshold of sensitivity of these neurons to carbon dioxide. The proportion of older insects (21–30 d post-emergence) that responds to 150 ppm carbon dioxide is higher than the proportion that responds among younger insects (1–10 d post-emergence). Conclusions: Anopheles stephensi infected with Plasmodium berghei exhibit sensitivities to stimulation with carbon dioxide and 1-octen-3-ol similar to those of uninfected mosquitoes. However, the age of the infected or uninfected mosquito does affect the threshold of sensitivity of these neurons to carbon dioxide.