Person:
Sompolinsky, Haim

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Sompolinsky

First Name

Haim

Name

Sompolinsky, Haim

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Publication
    Bayesian Model of Dynamic Image Stabilization in the Visual System
    (Proceedings of the National Academy of Sciences, 2010) Burak, Yoram; Rokni, Uri; Meister, Markus; Sompolinsky, Haim
    Humans can resolve the fine details of visual stimuli although the image projected on the retina is constantly drifting relative to the photoreceptor array. Here we demonstrate that the brain must take this drift into account when performing high acuity visual tasks. Further, we propose a decoding strategy for interpreting the spikes emitted by the retina, which takes into account the ambiguity caused by retinal noise and the unknown trajectory of the projected image on the retina. A main difficulty, addressed in our proposal, is the exponentially large number of possible stimuli, which renders the ideal Bayesian solution to the problem computationally intractable. In contrast, the strategy that we propose suggests a realistic implementation in the visual cortex. The implementation involves two populations of cells, one that tracks the position of the image and another that represents a stabilized estimate of the image itself. Spikes from the retina are dynamically routed to the two populations and are interpreted in a probabilistic manner. We consider the architecture of neural circuitry that could implement this strategy and its performance under measured statistics of human fixational eye motion. A salient prediction is that in high acuity tasks, fixed features within the visual scene are beneficial because they provide information about the drifting position of the image. Therefore, complete elimination of peripheral features in the visual scene should degrade performance on high acuity tasks involving very small stimuli.
  • Thumbnail Image
    Publication
    Computing Complex Visual Features with Retinal Spike Times
    (Public Library of Science, 2013) Gütig, Robert; Gollisch, Tim; Sompolinsky, Haim; Meister, Markus
    Neurons in sensory systems can represent information not only by their firing rate, but also by the precise timing of individual spikes. For example, certain retinal ganglion cells, first identified in the salamander, encode the spatial structure of a new image by their first-spike latencies. Here we explore how this temporal code can be used by downstream neural circuits for computing complex features of the image that are not available from the signals of individual ganglion cells. To this end, we feed the experimentally observed spike trains from a population of retinal ganglion cells to an integrate-and-fire model of post-synaptic integration. The synaptic weights of this integration are tuned according to the recently introduced tempotron learning rule. We find that this model neuron can perform complex visual detection tasks in a single synaptic stage that would require multiple stages for neurons operating instead on neural spike counts. Furthermore, the model computes rapidly, using only a single spike per afferent, and can signal its decision in turn by just a single spike. Extending these analyses to large ensembles of simulated retinal signals, we show that the model can detect the orientation of a visual pattern independent of its phase, an operation thought to be one of the primitives in early visual processing. We analyze how these computations work and compare the performance of this model to other schemes for reading out spike-timing information. These results demonstrate that the retina formats spatial information into temporal spike sequences in a way that favors computation in the time domain. Moreover, complex image analysis can be achieved already by a simple integrate-and-fire model neuron, emphasizing the power and plausibility of rapid neural computing with spike times.
  • Thumbnail Image
    Publication
    Time-Warp–Invariant Neuronal Processing
    (Public Library of Science, 2009) Gütig, Robert; Sompolinsky, Haim
    Fluctuations in the temporal durations of sensory signals constitute a major source of variability within natural stimulus ensembles. The neuronal mechanisms through which sensory systems can stabilize perception against such fluctuations are largely unknown. An intriguing instantiation of such robustness occurs in human speech perception, which relies critically on temporal acoustic cues that are embedded in signals with highly variable duration. Across different instances of natural speech, auditory cues can undergo temporal warping that ranges from 2-fold compression to 2-fold dilation without significant perceptual impairment. Here, we report that time-warp–invariant neuronal processing can be subserved by the shunting action of synaptic conductances that automatically rescales the effective integration time of postsynaptic neurons. We propose a novel spike-based learning rule for synaptic conductances that adjusts the degree of synaptic shunting to the temporal processing requirements of a given task. Applying this general biophysical mechanism to the example of speech processing, we propose a neuronal network model for time-warp–invariant word discrimination and demonstrate its excellent performance on a standard benchmark speech-recognition task. Our results demonstrate the important functional role of synaptic conductances in spike-based neuronal information processing and learning. The biophysics of temporal integration at neuronal membranes can endow sensory pathways with powerful time-warp–invariant computational capabilities.