Person:
Brownstein, Catherine

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Brownstein

First Name

Catherine

Name

Brownstein, Catherine

Search Results

Now showing 1 - 6 of 6
  • Thumbnail Image
    Publication
    De novo ATP1A3 and compound heterozygous NLRP3 mutations in a child with autism spectrum disorder, episodic fatigue and somnolence, and muckle-wells syndrome
    (Elsevier, 2018) Torres, Alcy; Brownstein, Catherine; Tembulkar, Sahil K.; Graber, Kelsey; Genetti, Casie; Kleiman, Robin J.; Sweadner, Kathleen; Mavros, Chrystal; Liu, Kevin X.; Smedemark-Margulies, Niklas; Maski, Kiran; Yang, Edward; Agrawal, Pankaj; Shi, Jiahai; Beggs, Alan; D'Angelo, Eugene; Lincoln, Sarah Hope; Carroll, Devon; Dedeoglu, Fatma; Gahl, William A.; Biggs, Catherine M.; Swoboda, Kathryn; Berry, Gerard; Gonzalez-Heydrich, Joseph
    Complex phenotypes may represent novel syndromes that are the composite interaction of several genetic and environmental factors. We describe an 9-year old male with high functioning autism spectrum disorder and Muckle-Wells syndrome who at age 5 years of age manifested perseverations that interfered with his functioning at home and at school. After age 6, he developed intermittent episodes of fatigue and somnolence lasting from hours to weeks that evolved over the course of months to more chronic hypersomnia. Whole exome sequencing showed three mutations in genes potentially involved in his clinical phenotype. The patient has a predicted pathogenic de novo heterozygous p.Ala681Thr mutation in the ATP1A3 gene (chr19:42480621C>T, GRCh37/hg19). Mutations in this gene are known to cause Alternating Hemiplegia of Childhood, Rapid Onset Dystonia Parkinsonism, and CAPOS syndrome, sometimes accompanied by autistic features. The patient also has compound heterozygosity for p.Arg490Lys/p.Val200Met mutations in the NLRP3 gene (chr1:247588214G>A and chr1:247587343G>A, respectively). NLRP3 mutations are associated in an autosomal dominant manner with clinically overlapping auto-inflammatory conditions including Muckle-Wells syndrome. The p.Arg490Lys is a known pathogenic mutation inherited from the patient's father. The p.Val200Met mutation, inherited from his mother, is a variant of unknown significance (VUS). Whether the de novoATP1A3mutation is responsible for or plays a role in the patient's episodes of fatigue and somnolence remains to be determined. The unprecedented combination of two NLRP3 mutations may be responsible for other aspects of his complex phenotype.
  • Thumbnail Image
    Publication
    An international effort towards developing standards for best practices in analysis, interpretation and reporting of clinical genome sequencing results in the CLARITY Challenge
    (BioMed Central, 2014) Brownstein, Catherine; Beggs, Alan; Homer, Nils; Merriman, Barry; Yu, Timothy W; Flannery, Katherine; DeChene, Elizabeth T; Towne, Meghan C; Savage, Sarah K; Price, Emily N; Holm, Ingrid; Luquette, Joe; Lyon, Elaine; Majzoub, Joseph; Neupert, Peter; McCallie Jr, David; Szolovits, Peter; Willard, Huntington F; Mendelsohn, Nancy J; Temme, Renee; Finkel, Richard S; Yum, Sabrina W; Medne, Livija; Sunyaev, Shamil; Adzhubey, Ivan; Cassa, Christopher; de Bakker, Paul IW; Duzkale, Hatice; Dworzyński, Piotr; Fairbrother, William; Francioli, Laurent; Funke, Birgit; Giovanni, Monica A; Handsaker, Robert; Lage, Kasper; Lebo, Matthew; Lek, Monkol; Leshchiner, Ignaty; MacArthur, Daniel; McLaughlin, Heather M; Murray, Michael F; Pers, Tune H; Polak, Paz P; Raychaudhuri, Soumya; Rehm, Heidi; Soemedi, Rachel; Stitziel, Nathan O; Vestecka, Sara; Supper, Jochen; Gugenmus, Claudia; Klocke, Bernward; Hahn, Alexander; Schubach, Max; Menzel, Mortiz; Biskup, Saskia; Freisinger, Peter; Deng, Mario; Braun, Martin; Perner, Sven; Smith, Richard JH; Andorf, Janeen L; Huang, Jian; Ryckman, Kelli; Sheffield, Val C; Stone, Edwin M; Bair, Thomas; Black-Ziegelbein, E Ann; Braun, Terry A; Darbro, Benjamin; DeLuca, Adam P; Kolbe, Diana L; Scheetz, Todd E; Shearer, Aiden E; Sompallae, Rama; Wang, Kai; Bassuk, Alexander G; Edens, Erik; Mathews, Katherine; Moore, Steven A; Shchelochkov, Oleg A; Trapane, Pamela; Bossler, Aaron; Campbell, Colleen A; Heusel, Jonathan W; Kwitek, Anne; Maga, Tara; Panzer, Karin; Wassink, Thomas; Van Daele, Douglas; Azaiez, Hela; Booth, Kevin; Meyer, Nic; Segal, Michael M; Williams, Marc S; Tromp, Gerard; White, Peter; Corsmeier, Donald; Fitzgerald-Butt, Sara; Herman, Gail; Lamb-Thrush, Devon; McBride, Kim L; Newsom, David; Pierson, Christopher R; Rakowsky, Alexander T; Maver, Aleš; Lovrečić, Luca; Palandačić, Anja; Peterlin, Borut; Torkamani, Ali; Wedell, Anna; Huss, Mikael; Alexeyenko, Andrey; Lindvall, Jessica M; Magnusson, Måns; Nilsson, Daniel; Stranneheim, Henrik; Taylan, Fulya; Gilissen, Christian; Hoischen, Alexander; van Bon, Bregje; Yntema, Helger; Nelen, Marcel; Zhang, Weidong; Sager, Jason; Zhang, Lu; Blair, Kathryn; Kural, Deniz; Cariaso, Michael; Lennon, Greg G; Javed, Asif; Agrawal, Saloni; Ng, Pauline C; Sandhu, Komal S; Krishna, Shuba; Veeramachaneni, Vamsi; Isakov, Ofer; Halperin, Eran; Friedman, Eitan; Shomron, Noam; Glusman, Gustavo; Roach, Jared C; Caballero, Juan; Cox, Hannah C; Mauldin, Denise; Ament, Seth A; Rowen, Lee; Richards, Daniel R; Lucas, F Anthony San; Gonzalez-Garay, Manuel L; Caskey, C Thomas; Bai, Yu; Huang, Ying; Fang, Fang; Zhang, Yan; Wang, Zhengyuan; Barrera, Jorge; Garcia-Lobo, Juan M; González-Lamuño, Domingo; Llorca, Javier; Rodriguez, Maria C; Varela, Ignacio; Reese, Martin G; De La Vega, Francisco M; Kiruluta, Edward; Cargill, Michele; Hart, Reece K; Sorenson, Jon M; Lyon, Gholson J; Stevenson, David A; Bray, Bruce E; Moore, Barry M; Eilbeck, Karen; Yandell, Mark; Zhao, Hongyu; Hou, Lin; Chen, Xiaowei; Yan, Xiting; Chen, Mengjie; Li, Cong; Yang, Can; Gunel, Murat; Li, Peining; Kong, Yong; Alexander, Austin C; Albertyn, Zayed I; Boycott, Kym M; Bulman, Dennis E; Gordon, Paul MK; Innes, A Micheil; Knoppers, Bartha M; Majewski, Jacek; Marshall, Christian R; Parboosingh, Jillian S; Sawyer, Sarah L; Samuels, Mark E; Schwartzentruber, Jeremy; Kohane, Isaac; Margulies, David
    Background: There is tremendous potential for genome sequencing to improve clinical diagnosis and care once it becomes routinely accessible, but this will require formalizing research methods into clinical best practices in the areas of sequence data generation, analysis, interpretation and reporting. The CLARITY Challenge was designed to spur convergence in methods for diagnosing genetic disease starting from clinical case history and genome sequencing data. DNA samples were obtained from three families with heritable genetic disorders and genomic sequence data were donated by sequencing platform vendors. The challenge was to analyze and interpret these data with the goals of identifying disease-causing variants and reporting the findings in a clinically useful format. Participating contestant groups were solicited broadly, and an independent panel of judges evaluated their performance. Results: A total of 30 international groups were engaged. The entries reveal a general convergence of practices on most elements of the analysis and interpretation process. However, even given this commonality of approach, only two groups identified the consensus candidate variants in all disease cases, demonstrating a need for consistent fine-tuning of the generally accepted methods. There was greater diversity of the final clinical report content and in the patient consenting process, demonstrating that these areas require additional exploration and standardization. Conclusions: The CLARITY Challenge provides a comprehensive assessment of current practices for using genome sequencing to diagnose and report genetic diseases. There is remarkable convergence in bioinformatic techniques, but medical interpretation and reporting are areas that require further development by many groups.
  • Thumbnail Image
    Publication
    The sensitivity of exome sequencing in identifying pathogenic mutations for LGMD in the United States
    (2016) Reddy, Hemakumar M.; Cho, Kyung-Ah; Lek, Monkol; Estrella, Elicia; Valkanas, Elise; Jones, Michael D.; Mitsuhashi, Satomi; Darras, Basil; Amato, Anthony; Lidov, Hart; Brownstein, Catherine; Margulies, David; Yu, Timothy W.; Salih, Mustafa A.; Kunkel, Louis; MacArthur, Daniel; Kang, Peter B.
    The current study characterizes a cohort of limb-girdle muscular dystrophy (LGMD) in the United States using whole exome sequencing. Fifty-five families affected by LGMD were recruited using an institutionally-approved protocol. Exome sequencing was performed on probands and selected parental samples. Pathogenic mutations and co-segregation patterns were confirmed by Sanger sequencing. Twenty-two families (40%) had novel and previously reported pathogenic mutations, primarily in LGMD genes, but also in genes for Duchenne muscular dystrophy, facioscapulohumeral muscular dystrophy, congenital myopathy, myofibrillar myopathy, inclusion body myopathy, and Pompe disease. One family was diagnosed via clinical testing. Dominant mutations were identified in COL6A1, COL6A3, FLNC, LMNA, RYR1, SMCHD1, and VCP, recessive mutations in ANO5, CAPN3, GAA, LAMA2, SGCA, and SGCG, and X-linked mutations in DMD. A previously reported variant in DMD was confirmed to be benign. Exome sequencing is a powerful diagnostic tool for LGMD. Despite careful phenotypic screening, pathogenic mutations were found in other muscle disease genes, largely accounting for the increased sensitivity of exome sequencing. Our experience suggests that broad sequencing panels are useful for these analyses due to the phenotypic overlap of many neuromuscular conditions. The confirmation of a benign DMD variant illustrates the potential of exome sequencing to help determine pathogenicity.
  • Thumbnail Image
    Publication
    AIFM1 mutation presenting with fatal encephalomyopathy and mitochondrial disease in an infant
    (Cold Spring Harbor Laboratory Press, 2017) Morton, Sarah; Prabhu, Sanjay; Lidov, Hart; Shi, Jiahai; Anselm, Irina; Brownstein, Catherine; Bainbridge, Matthew N.; Beggs, Alan; Vargas, Sara; Agrawal, Pankaj
    Apoptosis-inducing factor mitochondrion-associated 1 (AIFM1), encoded by the gene AIFM1, has roles in electron transport, apoptosis, ferredoxin metabolism, reactive oxygen species generation, and immune system regulation. Here we describe a patient with a novel AIFM1 variant presenting unusually early in life with mitochondrial disease, rapid deterioration, and death. Autopsy, at the age of 4 mo, revealed features of mitochondrial encephalopathy, myopathy, and involvement of peripheral nerves with axonal degeneration. In addition, there was microvesicular steatosis in the liver, thymic noninvolution, follicular bronchiolitis, and pulmonary arterial medial hypertrophy. This report adds to the clinical and pathological spectrum of disease related to AIFM1 mutations and provides insights into the role of AIFM1 in cellular function.
  • Thumbnail Image
    Publication
    A novel de novo mutation in ATP1A3 and childhood-onset schizophrenia
    (Cold Spring Harbor Laboratory Press, 2016) Smedemark-Margulies, Niklas; Brownstein, Catherine; Vargas, Sigella; Tembulkar, Sahil K.; Towne, Meghan C.; Shi, Jiahai; Gonzalez-Cuevas, Elisa; Liu, Kevin X.; Bilguvar, Kaya; Kleiman, Robin J.; Han, Min-Joon; Torres, Alcy; Berry, Gerard T.; Yu, Timothy W.; Beggs, Alan; Agrawal, Pankaj; Gonzalez-Heydrich, Joseph
    We describe a child with onset of command auditory hallucinations and behavioral regression at 6 yr of age in the context of longer standing selective mutism, aggression, and mild motor delays. His genetic evaluation included chromosomal microarray analysis and whole-exome sequencing. Sequencing revealed a previously unreported heterozygous de novo mutation c.385G>A in ATP1A3, predicted to result in a p.V129M amino acid change. This gene codes for a neuron-specific isoform of the catalytic α-subunit of the ATP-dependent transmembrane sodium–potassium pump. Heterozygous mutations in this gene have been reported as causing both sporadic and inherited forms of alternating hemiplegia of childhood and rapid-onset dystonia parkinsonism. We discuss the literature on phenotypes associated with known variants in ATP1A3, examine past functional studies of the role of ATP1A3 in neuronal function, and describe a novel clinical presentation associated with mutation of this gene.
  • Thumbnail Image
    Publication
    Integration of a standardized pharmacogenomic platform for clinical decision support at Boston Children's Hospital
    (BioMed Central, 2012) Brownstein, Catherine; Fusaro, Vincent Alfred; Savage, Sarah; Clinton, Catherine; Mandl, Kenneth; Margulies, David; Wolf, Wendy; Manzi, Shannon