Person: Lacy-Hulbert, Adam
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Lacy-Hulbert
First Name
Adam
Name
Lacy-Hulbert, Adam
6 results
Search Results
Now showing 1 - 6 of 6
Publication Selective αv integrin depletion identifies a core, targetable molecular pathway that regulates fibrosis across solid organs(2013) Henderson, Neil C; Arnold, Thomas D; Katamura, Yoshio; Giacomini, Marilyn M; Rodriguez, Juan D; McCarty, Joseph H; Pellicoro, Antonella; Raschperger, Elisabeth; Betsholtz, Christer; Ruminski, Peter G; Griggs, David W; Prinsen, Michael J; Maher, Jacquelyn J; Iredale, John P; Lacy-Hulbert, Adam; Adams, Ralf H; Sheppard, DeanMyofibroblasts are the major source of extracellular matrix components that accumulate during tissue fibrosis, and hepatic stellate cells (HSCs) are the major source of myofibroblasts in the liver. To date, robust systems to genetically manipulate these cells have not existed. We report that Pdgfrb-Cre inactivates genes in murine HSCs with high efficiency. We used this system to delete the αv integrin subunit because of the suggested role of multiple αv integrins as central mediators of fibrosis in multiple organs. Depletion of the αv integrin subunit in HSCs protected mice from CCl4-induced hepatic fibrosis, whereas global loss of αvβ3, αvβ5 or αvβ6 or conditional loss of αvβ8 on HSCs did not. Pdgfrb-Cre effectively targeted myofibroblasts in multiple organs, and depletion of αv integrins using this system was also protective in models of pulmonary and renal fibrosis. Critically, pharmacological blockade of αv integrins by a novel small molecule (CWHM 12) attenuated both liver and lung fibrosis, even when administered after fibrosis was established. These data identify a core pathway that regulates fibrosis, and suggest that pharmacological targeting of all αv integrins may have clinical utility in the treatment of patients with a broad range of fibrotic diseases.Publication Activation of caspase-1 by the NLRP3 inflammasome regulates the NADPH oxidase NOX2 to control phagosome function(2013) Sokolovska, Anna; Becker, Christine E.; Eddie Ip, WK; Rathinam, Vijay A.K.; Brudner, Matthew; Paquette, Nicholas; Tanne, Antoine; Vanaja, Sivapriya K.; Moore, Kathryn J.; Fitzgerald, Katherine A.; Lacy-Hulbert, Adam; Stuart, LyndaPhagocytosis is a fundamental cellular process that is pivotal for immunity as it coordinates microbial killing, innate immune activation and antigen presentation. An essential step in this process is phagosome acidification, which regulates a number of functions of these organelles that allow them to participate in processes essential to both innate and adaptive immunity. Here we report that acidification of phagosomes containing Gram-positive bacteria is regulated by the NLRP3-inflammasome and caspase-1. Active caspase-1 accumulates on phagosomes and acts locally to control the pH by modulating buffering by the NADPH oxidase NOX2. These data provide insight into a mechanism by which innate immune signals can modify cellular defenses and establish a new function for the NLRP3-inflammasome and caspase-1 in host defense.Publication Inflammation-induced effector CD4+ T cell interstitial migration is alpha-v integrin dependent(2014) Overstreet, Michael G.; Gaylo, Alison; Angermann, Bastian; Hughson, Angela; Hyun, Young-min; Lambert, Kris; Acharya, Mridu; Billroth-Maclurg, Alison C.; Rosenberg, Alexander F.; Topham, David J.; Yagita, Hideo; Kim, Minsoo; Lacy-Hulbert, Adam; Meier-Schellersheim, Martin; Fowell, Deborah J.Leukocytes must traverse inflamed tissues to effectively control local infection. Although motility in dense tissues appears to be integrin-independent actin-myosin based, during inflammation changes to the extracellular matrix (ECM) may necessitate distinct motility requirements. Indeed, we found that T cell interstitial motility was critically dependent on RGD-binding integrins in the inflamed dermis. Inflammation-induced deposition of fibronectin was functionally linked to increased αv integrin expression on effector CD4+ T cells. Using intravital multi-photon imaging, we found that CD4+ T cell motility was dependent on αv expression. Selective αv blockade or knockdown arrested TH1 motility in the inflamed tissue and attenuated local effector function. These data show a context-dependent specificity of lymphocyte movement in inflamed tissues that is essential for protective immunity.Publication Transposon activation mutagenesis as a screening tool for identifying resistance to cancer therapeutics(BioMed Central, 2013) Chen, Li; Stuart, Lynda; Ohsumi, Toshiro K; Burgess, Shawn; Varshney, Gaurav K; Dastur, Anahita; Borowsky, Mark L; Benes, Cyril; Lacy-Hulbert, Adam; Schmidt, Emmett VBackground: The development of resistance to chemotherapies represents a significant barrier to successful cancer treatment. Resistance mechanisms are complex, can involve diverse and often unexpected cellular processes, and can vary with both the underlying genetic lesion and the origin or type of tumor. For these reasons developing experimental strategies that could be used to understand, identify and predict mechanisms of resistance in different malignant cells would be a major advance. Methods: Here we describe a gain-of-function forward genetic approach for identifying mechanisms of resistance. This approach uses a modified piggyBac transposon to generate libraries of mutagenized cells, each containing transposon insertions that randomly activate nearby gene expression. Genes of interest are identified using next-gen high-throughput sequencing and barcode multiplexing is used to reduce experimental cost. Results: Using this approach we successfully identify genes involved in paclitaxel resistance in a variety of cancer cell lines, including the multidrug transporter ABCB1, a previously identified major paclitaxel resistance gene. Analysis of co-occurring transposons integration sites in single cell clone allows for the identification of genes that might act cooperatively to produce drug resistance a level of information not accessible using RNAi or ORF expression screening approaches. Conclusion: We have developed a powerful pipeline to systematically discover drug resistance in mammalian cells in vitro. This cost-effective approach can be readily applied to different cell lines, to identify canonical or context specific resistance mechanisms. Its ability to probe complex genetic context and non-coding genomic elements as well as cooperative resistance events makes it a good complement to RNAi or ORF expression based screens.Publication Tumor Necrosis Factor \(\alpha\) Inhibits Expression of the Iron Regulating Hormone Hepcidin in Murine Models of Innate Colitis(Public Library of Science, 2012) Shanmugam, Nanda; Ellenbogen, Shiri; Trebicka, Estela; Wang, Lijian; Mukhopadhyay, Subhankar; Lacy-Hulbert, Adam; Gallini, Carey; Garrett, Wendy; Cherayil, BobbyBackground: Abnormal expression of the liver peptide hormone hepcidin, a key regulator of iron homeostasis, contributes to the pathogenesis of anemia in conditions such as inflammatory bowel disease (IBD). Since little is known about the mechanisms that control hepcidin expression during states of intestinal inflammation, we sought to shed light on this issue using mouse models. Methodology/Principal Findings: Hepcidin expression was evaluated in two types of intestinal inflammation caused by innate immune activation—dextran sulfate sodium (DSS)-induced colitis in wild-type mice and the spontaneous colitis occurring in T-bet/Rag2-deficient (TRUC) mice. The role of tumor necrosis factor (TNF) \(\alpha\) was investigated by in vivo neutralization, and by treatment of a hepatocyte cell line, as well as mice, with the recombinant cytokine. Expression and activation of Smad1, a positive regulator of hepcidin transcription, were assessed during colitis and following administration or neutralization of TNF\(\alpha\). Hepcidin expression progressively decreased with time during DSS colitis, correlating with changes in systemic iron distribution. TNF\(\alpha\) inhibited hepcidin expression in cultured hepatocytes and non-colitic mice, while TNF\(\alpha\) neutralization during DSS colitis increased it. Similar results were obtained in TRUC mice. These effects involved a TNF\(\alpha\)-dependent decrease in Smad1 protein but not mRNA. Conclusions/Significance: TNF\(\alpha\) inhibits hepcidin expression in two distinct types of innate colitis, with down-regulation of Smad1 protein playing an important role in this process. This inhibitory effect of TNF\(\alpha\) may be superseded by other factors in the context of T cell-mediated colitis given that in the latter form of intestinal inflammation hepcidin is usually up-regulated.Publication EGL-9 Controls C. elegans Host Defense Specificity through Prolyl Hydroxylation-Dependent and -Independent HIF-1 Pathways(Public Library of Science, 2012) Luhachack, Lyly G.; Visvikis, Orane; Wollenberg, Amanda C.; Lacy-Hulbert, Adam; Stuart, Lynda; Irazoqui, Javier ElbioUnderstanding host defense against microbes is key to developing new and more effective therapies for infection and inflammatory disease. However, how animals integrate multiple environmental signals and discriminate between different pathogens to mount specific and tailored responses remains poorly understood. Using the genetically tractable model host Caenorhabditis elegans and pathogenic bacterium Staphylococcus aureus, we describe an important role for hypoxia-inducible factor (HIF) in defining the specificity of the host response in the intestine. We demonstrate that loss of egl-9, a negative regulator of HIF, confers HIF-dependent enhanced susceptibility to S. aureus while increasing resistance to Pseudomonas aeruginosa. In our attempt to understand how HIF could have these apparently dichotomous roles in host defense, we find that distinct pathways separately regulate two opposing functions of HIF: the canonical pathway is important for blocking expression of a set of HIF-induced defense genes, whereas a less well understood noncanonical pathway appears to be important for allowing the expression of another distinct set of HIF-repressed defense genes. Thus, HIF can function either as a gene-specific inducer or repressor of host defense, providing a molecular mechanism by which HIF can have apparently opposing roles in defense and inflammation. Together, our observations show that HIF can set the balance between alternative pathogen-specific host responses, potentially acting as an evolutionarily conserved specificity switch in the host innate immune response.