(2013-10-14) Sinha, Naveen Neil; Brenner, Michael P.; Weitz, David A.; Bertoldi, Katia
Most bacteria live in surface-attached colonies known as biofilms, which contain distinct cell types embedded in a self-produced extracellular network of polymers. Differentiation into functionally-distinct sub-populations of cells, or phenotypes, is primarily a result of nutrient availability and extracellular signals. These inputs change over time, leading to spatial and temporal patterns in the relative populations of phenotypes. Although transitions between phenotypes have been investigated in single cells, the triggers for this process within an intact biofilm are not well understood.