Person: Libermann, Towia
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Libermann
First Name
Towia
Name
Libermann, Towia
25 results
Search Results
Now showing 1 - 10 of 25
Publication Tie2 protects the vasculature against thrombus formation in systemic inflammation(American Society for Clinical Investigation, 2018-03-05) Higgins, Sarah; De Ceunynck, Karen; Kellum, John; Chen, Xiuying; Gu, Xuesong; Chaudhry, Sharjeel; Schulman, Sol; Libermann, Towia; Lu, Shulin; Shapiro, Nathan; Christiani, David; Flaumenhaft, Robert; Parikh, &Disordered coagulation contributes to death in sepsis and lacks effective treatments. Existing markers of disseminated intravascular coagulation (DIC) reflect its sequelae rather than its causes, delaying diagnosis and treatment. Here we show that disruption of the endothelial Tie2 axis is a sentinel event in septic DIC. Proteomics in septic DIC patients revealed a network involving inflammation and coagulation with the Tie2 antagonist, Angiopoietin-2 (Angpt-2), occupying a central node. Angpt-2 was strongly associated with traditional DIC markers including platelet counts, yet more accurately predicted mortality in two large independent cohorts (combined N = 1077). In endotoxemic mice, reduced Tie2 signaling preceded signs of overt DIC. During this early phase, intravital imaging of microvascular injury revealed excessive fibrin accumulation, a pattern remarkably mimicked by Tie2 deficiency even without inflammation. Conversely, Tie2 activation normalized pro-thrombotic responses by inhibiting endothelial tissue factor and phosphatidylserine exposure. Critically, Tie2 activation had no adverse effects on bleeding. These results mechanistically implicate Tie2 signaling as a central regulator of microvascular thrombus formation in septic DIC and indicate that circulating markers of the Tie2 axis could facilitate earlier diagnosis. Finally, interventions targeting Tie2 may normalize coagulation in inflammatory states while averting the bleeding risks of current DIC therapies.Publication Specific Transcriptome Changes Associated with Blood Pressure Reduction in Hypertensive Patients After Relaxation Response Training(Mary Ann Liebert, Inc., 2018) Bhasin, Manoj; Denninger, John; Huffman, Jeff C.; Joseph, Marie G.; Niles, Halsey; Chad-Friedman, Emma; Goldman, Roberta; Buczynski-Kelley, Beverly; Mahoney, Barbara A.; Fricchione, Gregory; Dusek, Jeffery A.; Benson, Herbert; Zusman, Randall; Libermann, TowiaAbstract Objective: Mind–body practices that elicit the relaxation response (RR) have been demonstrated to reduce blood pressure (BP) in essential hypertension (HTN) and may be an adjunct to antihypertensive drug therapy. However, the molecular mechanisms by which the RR reduces BP remain undefined. Design: Genomic determinants associated with responsiveness to an 8-week RR-based mind–body intervention for lowering HTN in 13 stage 1 hypertensive patients classified as BP responders and 11 as nonresponders were identified. Results: Transcriptome analysis in peripheral blood mononuclear cells identified 1771 genes regulated by the RR in responders. Biological process- and pathway-based analysis of transcriptome data demonstrated enrichment in the following gene categories: immune regulatory pathways and metabolism (among downregulated genes); glucose metabolism, cardiovascular system development, and circadian rhythm (among upregulated genes). Further in silico estimation of cell abundance from the microarray data showed enrichment of the anti-inflammatory M2 subtype of macrophages in BP responders. Nuclear factor-κB, vascular endothelial growth factor, and insulin were critical molecules emerging from interactive network analysis. Conclusions: These findings provide the first insights into the molecular mechanisms that are associated with the beneficial effects of the RR on HTN.Publication Preliminary Biomarkers for Identification of Human Ascending Thoracic Aortic Aneurysm(Blackwell Publishing Ltd, 2013) Black, Kendra M.; Masuzawa, Akihiro; Hagberg, Robert C.; Khabbaz, Kamal; Trovato, Mary E.; Rettagliati, Verna M.; Bhasin, Manoj; Dillon, Simon; Libermann, Towia; Toumpoulis, Ioannis K.; Levitsky, Sidney; McCully, JamesBackground: Human ascending thoracic aortic aneurysms (ATAAs) are life threatening and constitute a leading cause of mortality in the United States. Previously, we demonstrated that collagens α2(V) and α1(XI) mRNA and protein expression levels are significantly increased in ATAAs. Methods and Results: In this report, the authors extended these preliminary studies using high‐throughput proteomic analysis to identify additional biomarkers for use in whole blood real‐time RT‐PCR analysis to allow for the identification of ATAAs before dissection or rupture. Human ATAA samples were obtained from male and female patients aged 65±14 years. Both bicuspid and tricuspid aortic valve patients were included and compared with nonaneurysmal aortas (mean diameter 2.3 cm). Five biomarkers were identified as being suitable for detection and identification of ATAAs using qRT‐PCR analysis of whole blood. Analysis of 41 samples (19 small, 13 medium‐sized, and 9 large ATAAs) demonstrated the overexpression of 3 of these transcript biomarkers correctly identified 79.4% of patients with ATAA of ≥4.0 cm (P<0.001, sensitivity 0.79, CI=0.62 to 0.91; specificity 1.00, 95% CI=0.42 to 1.00). Conclusion: A preliminary transcript biomarker panel for the identification of ATAAs using whole blood qRT‐PCR analysis in men and women is presented.Publication Structural Analysis of Human Respiratory Syncytial Virus P Protein: Identification of Intrinsically Disordered Domains(Sociedade Brasileira de Microbiologia, 2011) Simabuco, Fernando M.; Asara, John; Guerrero, Manuel C.; Libermann, Towia; Zerbini, Luiz F.; Ventura, Armando M.Human Respiratory Syncytial Virus P protein plus the viral RNA, N and L viral proteins, constitute the viral replication complex. In this report we describe that HRSV P protein has putative intrinsically disordered domains predicted by in silico methods. These two domains, located at the amino and caboxi terminus, were identified by mass spectrometry analysis of peptides obtained from degradation fragments observed in purified P protein expressed in bacteria. The degradation is not occurring at the central oligomerization domain, since we also demonstrate that the purified fragments are able to oligomerize, similarly to the protein expressed in cells infected by HRSV. Disordered domains can play a role in protein interaction, and the present data contribute to the comprehension of HRSV P protein interactions in the viral replication complex.Publication Wheat amylase trypsin inhibitors drive intestinal inflammation via activation of toll-like receptor 4(The Rockefeller University Press, 2012) Junker, Yvonne; Zeissig, Sebastian; Kim, Seong-Jun; Barisani, Donatella; Wieser, Herbert; Leffler, Daniel; Zevallos, Victor; Libermann, Towia; Dillon, Simon; Freitag, Tobias L.; Kelly, Ciaran; Schuppan, DetlefIngestion of wheat, barley, or rye triggers small intestinal inflammation in patients with celiac disease. Specifically, the storage proteins of these cereals (gluten) elicit an adaptive Th1-mediated immune response in individuals carrying HLA-DQ2 or HLA-DQ8 as major genetic predisposition. This well-defined role of adaptive immunity contrasts with an ill-defined component of innate immunity in celiac disease. We identify the α-amylase/trypsin inhibitors (ATIs) CM3 and 0.19, pest resistance molecules in wheat, as strong activators of innate immune responses in monocytes, macrophages, and dendritic cells. ATIs engage the TLR4–MD2–CD14 complex and lead to up-regulation of maturation markers and elicit release of proinflammatory cytokines in cells from celiac and nonceliac patients and in celiac patients’ biopsies. Mice deficient in TLR4 or TLR4 signaling are protected from intestinal and systemic immune responses upon oral challenge with ATIs. These findings define cereal ATIs as novel contributors to celiac disease. Moreover, ATIs may fuel inflammation and immune reactions in other intestinal and nonintestinal immune disorders.Publication GADD45α and γ interaction with CDK11p58 regulates SPDEF protein stability and SPDEF-mediated effects on cancer cell migration(Impact Journals LLC, 2016) Tamura, Rodrigo E.; Paccez, Juliano D.; Duncan, Kristal C.; Morale, Mirian G.; Simabuco, Fernando M.; Dillon, Simon; Correa, Ricardo G.; Gu, Xuesong; Libermann, Towia; Zerbini, Luiz F.The epithelium-specific Ets transcription factor, SPDEF, plays a critical role in metastasis of prostate and breast cancer cells. While enhanced SPDEF expression blocks migration and invasion, knockdown of SPDEF expression enhances migration, invasion, and metastasis of cancer cells. SPDEF expression and activation is tightly regulated in cancer cells; however, the precise mechanism of SPDEF regulation has not been explored in detail. In this study we provide evidence that the cell cycle kinase CDK11p58, a protein involved in G2/M transition and degradation of several transcription factors, directly interacts with and phosphorylates SPDEF on serine residues, leading to subsequent ubiquitination and degradation of SPDEF through the proteasome pathway. As a consequence of CDK11p58 mediated degradation of SPDEF, this loss of SPDEF protein results in increased prostate cancer cell migration and invasion. In contrast, knockdown of CDK11p58 protein expression by interfering RNA or SPDEF overexpression inhibit migration and invasion of cancer cells. We demonstrate that CDK11p58 mediated degradation of SPDEF is attenuated by Growth Arrest and DNA damage-inducible 45 (GADD45) α and, two proteins inducing G2/M cell cycle arrest. We show that GADD45 α and γ, directly interact with CDK11p58 and thereby inhibit CDK11p58 activity, and consequentially SPDEF phosphorylation and degradation, ultimately reducing prostate cancer cell migration and invasion. Our findings provide new mechanistic insights into the complex regulation of SPDEF activity linked to cancer metastasis and characterize a previously unidentified SPDEF/CDK11p58/GADD45α/γ pathway that controls SPDEF protein stability and SPDEF-mediated effects on cancer cell migration and invasion.Publication Genomic and Clinical Effects Associated with a Relaxation Response Mind-Body Intervention in Patients with Irritable Bowel Syndrome and Inflammatory Bowel Disease(Public Library of Science, 2015) Kuo, Braden; Bhasin, Manoj; Jacquart, Jolene; Scult, Matthew A.; Slipp, Lauren; Riklin, Eric Isaac Kagan; Lepoutre, Veronique; Comosa, Nicole; Norton, Beth-Ann; Dassatti, Allison; Rosenblum, Jessica; Thurler, Andrea H.; Surjanhata, Brian C.; Hasheminejad, Nicole N.; Kagan, Leslee; Slawsby, Ellen; Rao, Sowmya R.; Macklin, Eric; Fricchione, Gregory; Benson, Herbert; Libermann, Towia; Korzenik, Joshua; Denninger, JohnIntroduction: Irritable Bowel Syndrome (IBS) and Inflammatory Bowel Disease (IBD) can profoundly affect quality of life and are influenced by stress and resiliency. The impact of mind-body interventions (MBIs) on IBS and IBD patients has not previously been examined. Methods: Nineteen IBS and 29 IBD patients were enrolled in a 9-week relaxation response based mind-body group intervention (RR-MBI), focusing on elicitation of the RR and cognitive skill building. Symptom questionnaires and inflammatory markers were assessed pre- and post-intervention, and at short-term follow-up. Peripheral blood transcriptome analysis was performed to identify genomic correlates of the RR-MBI. Results: Pain Catastrophizing Scale scores improved significantly post-intervention for IBD and at short-term follow-up for IBS and IBD. Trait Anxiety scores, IBS Quality of Life, IBS Symptom Severity Index, and IBD Questionnaire scores improved significantly post-intervention and at short-term follow-up for IBS and IBD, respectively. RR-MBI altered expression of more genes in IBD (1059 genes) than in IBS (119 genes). In IBD, reduced expression of RR-MBI response genes was most significantly linked to inflammatory response, cell growth, proliferation, and oxidative stress-related pathways. In IBS, cell cycle regulation and DNA damage related gene sets were significantly upregulated after RR-MBI. Interactive network analysis of RR-affected pathways identified TNF, AKT and NF-κB as top focus molecules in IBS, while in IBD kinases (e.g. MAPK, P38 MAPK), inflammation (e.g. VEGF-C, NF-κB) and cell cycle and proliferation (e.g. UBC, APP) related genes emerged as top focus molecules. Conclusions: In this uncontrolled pilot study, participation in an RR-MBI was associated with improvements in disease-specific measures, trait anxiety, and pain catastrophizing in IBS and IBD patients. Moreover, observed gene expression changes suggest that NF-κB is a target focus molecule in both IBS and IBD—and that its regulation may contribute to counteracting the harmful effects of stress in both diseases. Larger, controlled studies are needed to confirm this preliminary finding. Trial Registration ClinicalTrials.Gov NCT02136745Publication Novel non-invasive biomarkers that distinguish between benign prostate hyperplasia and prostate cancer(BioMed Central, 2015) Jedinak, Andrej; Curatolo, Adam; Zurakowski, David; Dillon, Simon; Bhasin, Manoj; Libermann, Towia; Roy, Roopali; Sachdev, Monisha; Loughlin, Kevin; Moses, MarshaBackground: The objective of this study was to discover and to validate novel noninvasive biomarkers that distinguish between benign prostate hyperplasia (BPH) and localized prostate cancer (PCa), thereby helping to solve the diagnostic dilemma confronting clinicians who treat these patients. Methods: Quantitative iTRAQ LC/LC/MS/MS analysis was used to identify proteins that are differentially expressed in the urine of men with BPH compared with those who have localized PCa. These proteins were validated in 173 urine samples from patients diagnosed with BPH (N = 83) and PCa (N = 90). Multivariate logistic regression analysis was used to identify the predictive biomarkers. Results: Three proteins, β2M, PGA3, and MUC3 were identified by iTRAQ and validated by immunoblot analyses. Univariate analysis demonstrated significant elevations in urinary β2M (P < 0.001), PGA3 (P = 0.006), and MUC3 (P = 0.018) levels found in the urine of PCa patients. Multivariate logistic regression analysis revealed AUC values ranging from 0.618 for MUC3 (P = 0.009), 0.625 for PGA3 (P < 0.008), and 0.668 for β2M (P < 0.001). The combination of all three demonstrated an AUC of 0.710 (95% CI: 0.631 – 0.788, P < 0.001); diagnostic accuracy improved even more when these data were combined with PSA categories (AUC = 0.812, (95% CI: 0.740 – 0.885, P < 0.001). Conclusions: Urinary β2M, PGA3, and MUC3, when analyzed alone or when multiplexed with clinically defined categories of PSA, may be clinically useful in noninvasively resolving the dilemma of effectively discriminating between BPH and localized PCa. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1284-z) contains supplementary material, which is available to authorized users.Publication Inactivation of GSK3β and activation of NF-κB pathway via Axl represents an important mediator of tumorigenesis in esophageal squamous cell carcinoma(The American Society for Cell Biology, 2015) Paccez, Juliano D.; Duncan, Kristal; Vava, Akhona; Correa, Ricardo G.; Libermann, Towia; Parker, M. Iqbal; Zerbini, Luiz F.The receptor tyrosine kinase Axl has been described as an oncogene, and its deregulation has been implicated in the progression of several human cancers. While the role of Axl in esophageal adenocarcinoma has been addressed, there is no information about its role in esophageal squamous cell carcinoma (OSCC). In the current report, we identified, for the first time, deregulation of Axl expression in OSCC. Axl is consistently overexpressed in OSCC cell lines and human tumor samples, mainly in advanced stages of the disease. Blockage of Axl gene expression by small interfering RNA inhibits cell survival, proliferation, migration, and invasion in vitro and esophageal tumor growth in vivo. Additionally, repression of Axl expression results in Akt-dependent inhibition of pivotal genes involved in the nuclear factor-kappaB (NF-κB) pathway and in the induction of glycogen synthase kinase 3β (GSK3β) activity, resulting in loss of mesenchymal markers and induction of epithelial markers. Furthermore, treatment of esophageal cancer cells with the Akt inhibitor wortmannin inhibits NF-κB signaling, induces GSK3β activity, and blocks OSCC cell proliferation in an Axl-dependent manner. Taken together, our results establish a clear role for Axl in OSCC tumorigenesis with potential therapeutic implications.Publication Human Papillomavirus Type 16 E7 Oncoprotein Associates with the Cullin 2 Ubiquitin Ligase Complex, Which Contributes to Degradation of the Retinoblastoma Tumor Suppressor(American Society for Microbiology, 2007) Huh, K.; Zhou, Xiaobo; Hayakawa, H.; Cho, J.-Y.; Libermann, Towia; Jin, J.; Wade Harper, J.; Munger, K.Human papillomavirus type 16 (HPV16) and other high-risk HPVs are etiologically linked to the development of cervical carcinomas and contribute to a number of other tumors of the anogenital tract, as well as oral cancers. The high-risk HPV E6 and E7 oncoproteins are consistently expressed in cervical cancer cells and are necessary for the induction and maintenance of the transformed phenotype. An important aspect of HPV16 E7's oncogenic activities is destabilization of the retinoblastoma tumor suppressor (pRB) through a ubiquitin/proteasome-dependent mechanism, although the exact molecular mechanism is unknown. Here, we report that HPV16 E7 is associated with an enzymatically active cullin 2 ubiquitin ligase complex and that the HPV16 E7/pRB complex contains cullin 2. Depletion of cullin 2 by RNA interference causes increased steady-state levels and stability of pRB in HPV16 E7-expressing cells, and ectopic expression of HPV16 E7 and the cullin 2 complex leads to pRB ubiquitination in vivo. Hence, we propose that the HPV16 E7-associated cullin 2 ubiquitin ligase complex contributes to aberrant degradation of the pRB tumor suppressor in HPV16 E7-expressing cells.
- «
- 1 (current)
- 2
- 3
- »