Person: Marshak, Michael
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Marshak
First Name
Michael
Name
Marshak, Michael
9 results
Search Results
Now showing 1 - 9 of 9
Publication A metal-free organic–inorganic aqueous flow battery(Nature Publishing Group, 2014) Huskinson, Brian Thomas; Marshak, Michael; Suh, Changwon; Er, Suleyman; Gerhardt, Michael; Galvin, Cooper J.; Chen, Xudong; Aspuru-Guzik, Alan; Gordon, Roy; Aziz, MichaelAs the fraction of electricity generation from intermittent renewable sources—such as solar or wind—grows, the ability to store large amounts of electrical energy is of increasing importance. Solid-electrode batteries maintain discharge at peak power for far too short a time to fully regulate wind or solar power output\(^{1, 2}\). In contrast, flow batteries can independently scale the power (electrode area) and energy (arbitrarily large storage volume) components of the system by maintaining all of the electro-active species in fluid form\(^{3, 4, 5}\). Wide-scale utilization of flow batteries is, however, limited by the abundance and cost of these materials, particularly those using redox-active metals and precious-metal electrocatalysts\(^{6, 7}\). Here we describe a class of energy storage materials that exploits the favourable chemical and electrochemical properties of a family of molecules known as quinones. The example we demonstrate is a metal-free flow battery based on the redox chemistry of 9,10-anthraquinone-2,7-disulphonic acid (AQDS). AQDS undergoes extremely rapid and reversible two-electron two-proton reduction on a glassy carbon electrode in sulphuric acid. An aqueous flow battery with inexpensive carbon electrodes, combining the quinone/hydroquinone couple with the \(Br_2/Br^-\) redox couple, yields a peak galvanic power density exceeding 0.6 W cm^{−2} at 1.3 A cm^{−2}. Cycling of this quinone–bromide flow battery showed >99 per cent storage capacity retention per cycle. The organic anthraquinone species can be synthesized from inexpensive commodity chemicals\(^8\). This organic approach permits tuning of important properties such as the reduction potential and solubility by adding functional groups: for example, we demonstrate that the addition of two hydroxy groups to AQDS increases the open circuit potential of the cell by 11% and we describe a pathway for further increases in cell voltage. The use of π-aromatic redox-active organic molecules instead of redox-active metals represents a new and promising direction for realizing massive electrical energy storage at greatly reduced cost.Publication Dissecting the quinone bromide flow battery(2015) Chen, Qing; Gerhardt, Michael; Eisenach, Louise; Marshak, Michael; Gordon, Roy; Aziz, MichaelPublication Bromine-free quinone flow battery chemistries(American Chemical Society, 2015) Marshak, Michael; Aziz, Michael; Gordon, Roy; Aspuru-Guzik, Alan; Hogan, WilliamPublication Quinone electrochemistry in acidic and alkaline solutions and its application in large scale energy storage(2015) Gerhardt, Michael; Lin, Kaixiang; Chen, Qing; Marshak, Michael; Tong, Liuchuan; Gordon, Roy; Aziz, MichaelPublication Alkaline quinone flow battery(American Association for the Advancement of Science (AAAS), 2015) Lin, Kaixiang; Chen, Qing; Gerhardt, Michael; Tong, Liuchuan; Kim, Sang Bok; Eisenach, Louise; Valle, Alvaro; Hardee, D.; Gordon, Roy; Aziz, Michael; Marshak, MichaelStorage of photovoltaic and wind electricity in batteries could solve the mismatch problem between the intermittent supply of these renewable resources and variable demand. Flow batteries permit more economical long-duration discharge than solid-electrode batteries by using liquid electrolytes stored outside of the battery. We report an alkaline flow battery based on redox-active organic molecules that are composed entirely of Earth-abundant elements and are nontoxic, nonflammable, and safe for use in residential and commercial environments. The battery operates efficiently with high power density near room temperature. These results demonstrate the stability and performance of redox-active organic molecules in alkaline flow batteries, potentially enabling cost-effective stationary storage of renewable energy.Publication Computational design of molecules for an all-quinone redox flow battery(Royal Society of Chemistry (RSC), 2015) Er, Suleyman; Suh, Changwon; Marshak, Michael; Aspuru-Guzik, AlanInspired by the electron transfer properties of quinones in biological systems, we recently showed that quinones are also very promising electroactive materials for stationary energy storage applications. Due to the practically infinite chemical space of organic molecules, the discovery of additional quinones or other redox-active organic molecules for energy storage applications is an open field of inquiry. Here, we introduce a high-throughput computational screening approach that we applied to an accelerated study of a total of 1710 quinone (Q) and hydroquinone (QH2) (i.e., two-electron two-proton) redox couples. We identified the promising candidates for both the negative and positive sides of organic-based aqueous flow batteries, thus enabling an all-quinone battery. To further aid the development of additional interesting electroactive small molecules we also provide emerging quantitative structure-property relationships.Publication High-performance Aqueous Redox Flow Battery (ARFB)(2015) Lin, Kaixiang; Chen, Qing; Eisenach, Louise; Valle, Alvaro; Gordon, Roy; Aziz, Michael; Marshak, MichaelPublication Cycling of a Quinone-Bromide Flow Battery for Large-Scale Electrochemical Energy Storage(The Electrochemical Society, 2014) Huskinson, Brian Thomas; Marshak, Michael; Gerhardt, Michael; Aziz, MichaelWe have demonstrated the performance of an aqueous redox flow battery composed of a negative electrode consisting of a redox couple between anthraquinone di-sulfonate and its corresponding hydroquinone, and a positive electrode consisting of a redox couple between hydrobromic acid and bromine. The peak power density is approximately 0.6 W/cm2. After 750 deep cycles, the average discharge capacity retention is 99.84% per cycle and the average current efficiency is 98.35%.Publication Observation of seasonal variation of atmospheric multiple-muon events in the MINOS Near and Far Detectors(American Physical Society (APS), 2015) Adamson, P.; Anghel, I.; Aurisano, A.; Barr, G.; Bishai, M.; Blake, A.; Bock, G. J.; Bogert, D.; Cao, S. V.; Castromonte, C. M.; Childress, S.; Coelho, J. A. B.; Corwin, L.; Cronin-Hennessy, D.; de Jong, J. K.; Devan, A. V.; Devenish, N. E.; Diwan, M. V.; Escobar, C. O.; Evans, J. J.; Falk, E.; Feldman, Gary; Frohne, M. V.; Gallagher, H. R.; Gomes, R. A.; Goodman, M. C.; Gouffon, P.; Graf, N.; Gran, R.; Grzelak, K.; Habig, A.; Hahn, S. R.; Hartnell, J.; Hatcher, R.; Holin, A.; Huang, J.; Hylen, J.; Irwin, G. M.; Isvan, Z.; James, C.; Jensen, D.; Kafka, T.; Kasahara, S. M. S.; Koizumi, G.; Kordosky, M.; Kreymer, A.; Lang, K.; Ling, J.; Litchfield, P. J.; Lucas, P.; Mann, W. A.; Marshak, Michael; Mayer, N.; McGivern, C.; Medeiros, M. M.; Mehdiyev, R.; Meier, J. R.; Messier, M. D.; Miller, W. H.; Mishra, S. R.; Moed Sher, S.; Moore, C. D.; Mualem, L.; Musser, J.; Naples, D.; Nelson, J. K.; Newman, H. B.; Nichol, R. J.; Nowak, J. A.; O’Connor, J.; Orchanian, M.; Osprey, S.; Pahlka, R. B.; Paley, J.; Patterson, R. B.; Pawloski, G.; Perch, A.; Phan-Budd, S.; Plunkett, R. K.; Poonthottathil, N.; Qiu, X.; Radovic, A.; Rebel, B.; Rosenfeld, C.; Rubin, H. A.; Sanchez, M. C.; Schneps, J.; Schreckenberger, A.; Schreiner, P.; Sharma, R.; Sousa, A.; Tagg, N.; Talaga, R. L.; Thomas, J.; Thomson, M. A.; Tian, X.; Timmons, A.; Tognini, S. C.; Toner, Ruth; Torretta, D.; Urheim, J.; Vahle, P.; Viren, B.; Weber, A.; Webb, R. C.; White, C.; Whitehead, L.; Whitehead, L. H.; Wojcicki, S. G.; Zwaska, R.We report the first observation of seasonal modulations in the rates of cosmic ray multiple-muon events at two underground sites, the MINOS Near Detector with an overburden of 225 mwe, and the MINOS Far Detector site at 2100 mwe. At the deeper site, multiple-muon events with muons separated by more than 8 m exhibit a seasonal rate that peaks during the summer, similar to that of single-muon events. In contrast and unexpectedly, the rate of multiple-muon events with muons separated by less than 5–8 m, and the rate of multiple-muon events in the smaller, shallower Near Detector, exhibit a seasonal rate modulation that peaks in the winter.